Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 30(15): 127279, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32527459

ABSTRACT

The synthesis and structure activity relationship development of a pyrimidine series of heterocyclic Factor IXa inhibitors is described. Increased selectivity over Factor Xa inhibition was achieved through SAR expansion of the P1 element. Select compounds were evaluated in vivo to assess their plasma levels in rat.


Subject(s)
Drug Discovery , Factor IXa/antagonists & inhibitors , Factor Xa Inhibitors/pharmacology , Pyrimidines/pharmacology , Dose-Response Relationship, Drug , Factor IXa/metabolism , Factor Xa Inhibitors/chemical synthesis , Factor Xa Inhibitors/chemistry , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Structure-Activity Relationship
2.
ACS Med Chem Lett ; 8(12): 1292-1297, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29259750

ABSTRACT

Using the HIV-1 protease binding mode of MK-8718 and PL-100 as inspiration, a novel aspartate binding bicyclic piperazine sulfonamide core was designed and synthesized. The resulting HIV-1 protease inhibitor containing this core showed an 60-fold increase in enzyme binding affinity and a 10-fold increase in antiviral activity relative to MK-8718.

4.
Tetrahedron ; 69(29): 5829-5840, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23894213

ABSTRACT

The preparation of an indole appended vinamidinium salt, an indole appended vinylogous amide and an indole appended chloroenal are described. The subsequent regiospecific conversion of these indole containing building blocks to functionalized pyrazoles and pyrroles is detailed.

5.
Bioorg Med Chem Lett ; 21(1): 471-4, 2011 Jan 01.
Article in English | MEDLINE | ID: mdl-21094607

ABSTRACT

Previous efforts by our group have established pyrazolo[1,5-a]pyrimidine as a viable core for the development of potent and selective CDK inhibitors. As part of an effort to utilize the pyrazolo[1,5-a]pyrimidine core as a template for the design and synthesis of potent and selective kinase inhibitors, we focused on a key regulator in the cell cycle progression, CHK1. Continued SAR development of the pyrazolo[1,5-a]pyrimidine core at the C5 and C6 positions, in conjunction with previously disclosed SAR at the C3 and C7 positions, led to the discovery of potent and selective CHK1 inhibitors.


Subject(s)
Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Pyrazoles/chemistry , Pyrimidines/chemistry , Binding Sites , Catalytic Domain , Checkpoint Kinase 1 , Crystallography, X-Ray , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Drug Evaluation, Preclinical , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...