Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Nat Commun ; 8(1): 1898, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29196691

ABSTRACT

Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

2.
J Am Chem Soc ; 139(29): 10036-10054, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28640639

ABSTRACT

Reactions of ß-diketiminato magnesium and calcium hydrides with 1 atm of CO result in a reductive coupling process to produce the corresponding derivatives of the cis-ethenediolate dianion. Computational (DFT) analysis of this process mediated by Ca, Sr, and Ba highlights a common mechanism and a facility for the reaction that is enhanced by increasing alkaline earth atomic weight. Reaction of CO with PhSiH3 in the presence of the magnesium or calcium hydrides results in catalytic reduction to methylsilane and methylene silyl ether products, respectively. These reactions are proposed to ensue via the interception of initially formed group 2 formyl intermediates, an inference which is confirmed by a DFT analysis of the magnesium-centered reaction. The computational results identify the rate-determining process, requiring traversal of a 33.9 kcal mol-1 barrier, as a Mg-H/C-O σ-bond metathesis reaction, associated with the ultimate cleavage of the C-O bond. The carbonylation reactivity is extended to a variety of magnesium and calcium amides. With primary amido complexes, which for calcium include a derivative of the parent [NH2]- anion, CO insertion is facile and ensues with subsequent nitrogen-to-carbon migration of hydrogen to yield a variety of dinuclear and, in one case, trinuclear formamidate species. The generation of initial carbenic carbamoyl intermediates is strongly implicated through the isolation of the CO insertion product of a magnesium N-methylanilide derivative. These observations are reinforced by a DFT analysis of the calcium-centered reaction with aniline, which confirms the exothermicity of the formamidate formation (ΔH = -67.7 kcal mol-1). Stoichiometric reduction of the resultant magnesium and calcium formamidates with pinacolborane results in the synthesis of the corresponding N-borylated methylamines. This takes place via a sequence of reactions initiated through the generation of amidatohydridoborate intermediates and a cascade of reactivity that is analogous to that previously reported for the deoxygenative hydroboration of organic isocyanates catalyzed by the same magnesium hydride precatalyst. Although a sequence of amine formylation and deoxygenation may be readily envisaged for the catalytic utilization of CO as a C1 source in the production of methylamines, our observations demonstrate that competitive amine-borane dehydrocoupling is too facile under the conditions of 1 atm of CO employed.

3.
Chemistry ; 23(12): 2950-2959, 2017 Feb 24.
Article in English | MEDLINE | ID: mdl-28075505

ABSTRACT

The reactivity of terminal uranium(V/VI) nitrides with CE2 (E=O, S) is presented. Well-defined C=E cleavage followed by zero-, one-, and two-electron redox events is observed. The uranium(V) nitride [U(TrenTIPS )(N)][K(B15C5)2 ] (1, TrenTIPS =N(CH2 CH2 NSiiPr3 )3 ; B15C5=benzo-15-crown-5) reacts with CO2 to give [U(TrenTIPS )(O)(NCO)][K(B15C5)2 ] (3), whereas the uranium(VI) nitride [U(TrenTIPS )(N)] (2) reacts with CO2 to give isolable [U(TrenTIPS )(O)(NCO)] (4); complex 4 rapidly decomposes to known [U(TrenTIPS )(O)] (5) with concomitant formation of N2 and CO proposed, with the latter trapped as a vanadocene adduct. In contrast, 1 reacts with CS2 to give [U(TrenTIPS )(κ2 -CS3 )][K(B15C5)2 ] (6), 2, and [K(B15C5)2 ][NCS] (7), whereas 2 reacts with CS2 to give [U(TrenTIPS )(NCS)] (8) and "S", with the latter trapped as Ph3 PS. Calculated reaction profiles reveal outer-sphere reactivity for uranium(V) but inner-sphere mechanisms for uranium(VI); despite the wide divergence of products the initial activation of CE2 follows mechanistically related pathways, providing insight into the factors of uranium oxidation state, chalcogen, and NCE groups that govern the subsequent divergent redox reactions that include common one-electron reactions and a less-common two-electron redox event. Caution, we suggest, is warranted when utilising CS2 as a reactivity surrogate for CO2 .

4.
Angew Chem Int Ed Engl ; 55(40): 12290-4, 2016 09 26.
Article in English | MEDLINE | ID: mdl-27596570

ABSTRACT

Uranium nitrides are important materials with potential for application as fuels for nuclear power generation, and as highly active catalysts. Molecular nitride compounds could provide important insight into the nature of the uranium-nitride bond, but currently little is known about their reactivity. In this study, we found that a complex containing a nitride bridging two uranium centers and a cesium cation readily cleaved the C≡O bond (one of the strongest bonds in nature) under ambient conditions. The product formed has a [CsU2 (µ-CN)(µ-O)] core, thus indicating that the three cations cooperate to cleave CO. Moreover, the addition of MeOTf to the nitride complex led to an exceptional valence disproportionation of the CsU(IV) -N-U(IV) core to yield CsU(III) (OTf) and [MeN=U(V) ] fragments. The important role of multimetallic cooperativity in both reactions is illustrated by the computed reaction mechanisms.

5.
Chem Commun (Camb) ; 52(69): 10490-2, 2016 Aug 18.
Article in English | MEDLINE | ID: mdl-27499232

ABSTRACT

The first examples of essentially two-coordinate, monomeric zinc hydride complexes, LZnH (L = -N(Ar)(SiR3)) (Ar = C6H2{C(H)Ph2}2R'-2,6,4; R = Me, R' = Pr(i) (L'); R = Pr(i), R' = Me (L*); R = Pr(i), R' = Pr(i) (L(†))) have been prepared and shown by crystallographic studies to have near linear N-Zn-H fragments. The results of computational studies imply that any PhZn interactions in the compounds are weak at best. Preliminary reactivity studies reveal the compounds to be effective for the stoichiometric hydrozincation and catalytic hydrosilylation of carbonyl compounds.

6.
Dalton Trans ; 45(37): 14789-800, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27518264

ABSTRACT

The mechanistic investigation of the reductive coupling vs. reductive disproportionation of CO2 using magnesium(i) dimers bearing tripodal ligands, [{Mg[κ(3)-N,N',O-(ArNCMe)2(OCCPh2)CH]}2] (Ar = C6H3Et2-2,6) has been carried out using DFT computational methods. We also elucidated the reduction of N2O to form a µ-oxo magnesium complex which upon addition of CO2 affords the experimentally observed carbonate complex. Finally, the interesting reactivity towards SO2 is considered and some insights into the mechanistic aspects of such activation/homo-coupling reaction are given for both "Nacnac" substituted magnesium(i) dimers ([{((Dip)Nacnac)Mg}2] ((Dip)Nacnac = [(DipNCMe)2CH](-), Dip = C6H3Pr(i)2-2,6)) and those bearing tripodal ligands. The analogy between the activation chemistry of low-valent f-block metal complexes with that of magnesium systems is highlighted.

7.
Chem Soc Rev ; 45(9): 2516-43, 2016 05 07.
Article in English | MEDLINE | ID: mdl-26958989

ABSTRACT

A fifteen year contribution of computational studies carried out in close synergy with experiments is summarized. This interplay has allowed some important breakthroughs in the field of organolanthanide chemistry. The variety of different reaction mechanisms in lanthanide chemistry appear to be broader than the simple bond metathesis.

8.
Chemistry ; 22(14): 4743-7, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-26852715

ABSTRACT

A DFT mechanistic exploration of the reactivity of the dinitrogen hafnocene complex, [{(η(5)-C5 H2 -1,2,4-Me3)2 Hf}2 (µ2-N2)], towards mixtures of CO/CO2 and CO/OCNtBu is reported. The crucial role of the nitride intermediate is highlighted, as well as the importance of the bridging mode of the cyanate ligand between the two Hf metal atoms throughout the process. Interestingly, the CO2 addition to the nitride intermediate occurs through an outer-sphere transition state, whereas the addition of the heteroallene is governed by the steric congestion imposed by cyclopentadienyl ligands.

9.
J Am Chem Soc ; 138(7): 2114-7, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26844823

ABSTRACT

The unprecedented actinide-catalyzed addition of alcohols to carbodiimides is presented. This represents a rare example of thorium-catalyzed transformations of an alcoholic substrate and the first example of uranium complexes showing catalytic reactivity with alcohols. Using the uranium and thorium amides U[N(SiMe3)2]3 and [(Me3Si)2N]2An[κ(2)-(N,C)-CH2Si(CH3)2N(SiMe3)] (An = Th or U), alcohol additions to unsaturated carbon-nitrogen bonds are achieved in short reaction times with excellent selectivities and high to excellent yields. Computational studies, supported by experimental thermodynamic data, suggest plausible models of the profile of the reaction which allow the system to overcome the high barrier of scission of the actinide-oxygen bond. Accompanied by experimentally determined kinetic parameters, a plausible mechanism is proposed for the catalytic cycle.

10.
Chem Sci ; 7(9): 5846-5856, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-30034725

ABSTRACT

The reactions of the tetrasiloxide U(iii) complexes [U(OSi(O t Bu)3)4K] and [U(OSi(O t Bu)3)4][K18c6] with 0.5 equiv. of triphenylphosphine sulfide led to reductive S-transfer reactions, affording the U(iv) sulfide complexes [SU(OSi(O t Bu)3)4K2]2, 1, and [{SU(OSi(O t Bu)3)4K2}2(µ-18c6)], 2, with concomitant formation of the U(iv) complex [U(OSi(O t Bu)3)4]. Addition of 1 equiv. of 2.2.2-cryptand to complex 1 resulted in the isolation of a terminal sulfide complex, [SU(OSi(O t Bu)3)4K][Kcryptand], 3. The crucial role of the K+ Lewis acid in these reductive sulfur transfer reactions was confirmed, since the formation of complex 3 from the reaction of the U(iii) complex [U(OSi(O t Bu)3)4][Kcryptand] and 0.5 equiv. of PPh3S was not possible. Reactivity studies of the U(iv) sulfide complexes showed that the sulfide is easily transferred to CO2 and CS2 to afford S-functionalized products. Moreover, we have found that the sulfide provides a convenient precursor for the synthesis of the corresponding U(iv) hydrosulfide, {[(SH)U(OSi(O t Bu)3)4][K18c6]}, 5, after protonation with PyHCl. Finally, DFT calculations were performed to investigate the nature of the U-S bond in complexes 1, 3 and 5. Based on various analyses, triple-bond character was suggested for the U-S bond in complexes 1 and 3, while double-bond character was determined for the U-SH bond in complex 5.

11.
Chem Sci ; 7(9): 5939-5944, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-30034736

ABSTRACT

A dianionic tetrapodal pentadentate diborate ligand is introduced. This ligand forms a high spin neutral iron(ii) complex that reacts with a variety of organoazides to yield transient Fe(iii) imido radicals that are extremely potent hydrogen atom abstractors. The nature of these species is supported by full characterization of the Fe(iii) amido products, kinetic studies, density functional computations and Mössbauer spectroscopy on the -C6H4-p- t Bu substituted derivative.

12.
Chem Sci ; 7(3): 2179-2187, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-29899945

ABSTRACT

The mechanism of alkynoic acid cycloisomerization with SCS indenediide Pd pincer complexes has been investigated experimentally and computationally. These studies confirmed the cooperation between the Pd center and the backbone of the pincer ligand, and revealed the involvement of a second molecule of substrate. It acts as a proton shuttle in the activation of the acid, it directs the nucleophilic attack of the carboxylic acid on the π-coordinated alkyne and it relays the protonolysis of the resulting vinyl Pd species. A variety of H-bond donors have been evaluated as external additives, and polyols featuring proximal hydroxyl groups, in particular catechol derivatives, led to significant catalytic enhancement. The impact of 4-nitrocatechol and 1,2,3-benzenetriol is particularly striking on challenging substrates such as internal 4- and 5-alkynoic acids. Endo/exo selectivities up to 7.3/1 and 60-fold increase in reactivity were achieved.

13.
Chem Commun (Camb) ; 51(84): 15454-7, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26346380

ABSTRACT

The reaction of the sterically saturated uranium(III) tetrasilylamido complex [K(18c6)][U(N(SiMe3)2)4] with CO2 leads to CO2 insertion into the U-N bond affording the stable U(IV) isocyanate complex [K(18c6)][U(N(SiMe3)2)3(NCO)2]n that was crystallographically characterized. DFT studies indicate that the reaction involves the [2+2] cyclo-addition of a double bond of O=CO to the U-N(SiMe3)2 bond and proceeds to the final product through multiple silyl migration steps.

14.
Angew Chem Int Ed Engl ; 54(34): 10000-4, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26126428

ABSTRACT

Reduction of a variety of extremely bulky amido Group 12 metal halide complexes, [LMX(THF)(0,1)] (L=amide; M=Zn, Cd, or Hg; X=halide) with a magnesium(I) dimer gave a homologous series of two-coordinate metal(I) dimers, [L'MML'] (L'=N(Ar(†))(SiMe3), Ar(†)=C6H2{C(H)Ph2}2Pr(i)-2,6,4); and the formally zinc(0) complex, [L*ZnMg((Mes)Nacnac)] (L*=N(Ar*)(SiPr(i)3); Ar*=C6H2{C(H)Ph2}2Me-2,6,4; (Mes)Nacnac=[(MesNCMe)2CH](-), Mes=mesityl), which contains the first unsupported Zn-Mg bond. Two equivalents of [L*ZnMg((Mes)Nacnac)] react with ZnBr2 or ZnBr2(tmeda) to give the mixed valence, two-coordinate, linear tri-zinc complex, [L*Zn(I)Zn(0)Zn(I)L*], and the first zinc(I) halide complex, [L*ZnZnBr(tmeda)], respectively. The analogues [L*ZnMZnL*] (M=Cd or Hg), were also prepared, the Cd species contains the first Zn-Cd bond in a molecular compound. Metal-metal bonding was studied by DFT calculations.

15.
J Am Chem Soc ; 137(28): 8944-7, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26135846

ABSTRACT

This study details the formal hydrogenation of two magnesium(I) dimers {(Nacnac)Mg}2 (Nacnac = [{(C6H3R2-2,6)NCMe}2CH](-); R = Pr(i) ((Dip)Nacnac), Et ((Dep)Nacnac)) using 1,3-cyclohexadiene. These reactions afford the magnesium(II) hydride complexes, {(Nacnac)Mg(µ-H)}2. Their reactions with excess CO are sterically controlled and lead cleanly to different C-C coupled products, viz. the ethenediolate complex, ((Dip)Nacnac)Mg{κ(1)-O-[((Dip)Nacnac)Mg(κ(2)-O,O-O2C2H2)]}, and the first cyclopropanetriolate complex of any metal, cis-{((Dep)Nacnac)Mg}3{µ-C3(H3)O3}. Computational studies imply the CO activation processes proceed via very similar mechanisms to those previously reported for related reactions involving f-block metal hydride compounds. This work highlights the potential magnesium compounds hold for use in the "Fischer-Tropsch-like" transformation of CO/H2 mixtures to value added oxygenate products.

16.
Angew Chem Int Ed Engl ; 54(31): 9115-9, 2015 Jul 27.
Article in English | MEDLINE | ID: mdl-26110967

ABSTRACT

We describe the stable and isolable dimetalloxycarbene [(TiX3 )2 (µ2 -CO2 -κ(2) C,O:κO')] 5, where X=N-(tert-butyl)-3,5-dimethylanilide, which is stabilized by fluctuating µ2 -κ(2) C,O:κ(1) O' coordination of the carbene carbon to both titanium centers of the dinuclear complex 5, as shown by variable-temperature NMR studies. Quantum chemical calculations on the unmodified molecule indicated a higher energy of only +10.5 kJ mol(-1) for the µ2 -κ(1) O:κ(1) O' bonding mode of the free dimetalloxycarbene compared to the µ2 -κ(2) C,O:κ(1) O' bonding mode of the masked dimetalloxycarbene. The parent cationic bridging formate complex [(TiX3 )2 (µ2 -OCHO-κO:κO')][B(C6 F5)4], 4[B(C6 F5)4], was simply deprotonated with the strong base K(N(SiMe3 )2 ) to give 5. Complex 5 reacts smoothly with CO2 to generate the bridging oxalate complex [(TiX3 )2 (µ2 -C2 O4 -κO:κO'')], 6, in a C-C bond formation reaction commonly anticipated for oxalate formation by reductive coupling of CO2 on low-valent transition-metal complexes.

17.
Dalton Trans ; 44(6): 2575-87, 2015 Feb 14.
Article in English | MEDLINE | ID: mdl-25340677

ABSTRACT

Isomerisation of buta-1,2-diene to but-2-yne by (Me(5)C(5))(2)Yb is a thermodynamically favourable reaction, with the Δ(r)G° estimated from experimental data at 298 K to be -3.0 kcal mol(-1). It proceeds in hydrocarbon solvents with a pseudo first-order rate constant of 6.4 × 10(-6) s(-1) and 7.4 × 10(-5) s(-1) in C(6)D(12) and C(6)D(6), respectively, at 20 °C. This 1,3-hydrogen shift is formally forbidden by symmetry and has to occur by an alternative pathway. The proposed mechanism for buta-1,2-diene to but-2-yne isomerisation by (Me(5)C(5))(2)Yb involves coordination of methylallene (buta-1,2-diene) to (Me(5)C(5))(2)Yb, and deprotonation of methylallene by one of the Me(5)C(5) ligands followed by protonation of the terminal methylallenyl carbon to yield the known coordination compound (Me(5)C(5))(2)Yb(η(2)-MeC[triple bond, length as m-dash]CMe). Computationally, this mechanism is not initiated by a single electron transfer step, and the ytterbium retains its oxidation state (II) throughout the reactivity. Experimentally, the influence of the metal centre is discussed by comparison with the reaction of (Me(5)C(5))(2)Ca towards buta-1,2-diene, and (Me(5)C(5))(2)Yb with ethylene. The mechanism by which the Me(5)C(5) acts as a proton-relay within the coordination sphere of a metal also rationalises the reactivity of (i) (Me(5)C(5))(2)Eu(OEt(2)) with phenylacetylene, (ii) (Me(5)C(5))(2)Yb(OEt(2)) with phenylphosphine and (iii) (Me(5)C(5))(2)U(NPh)(2) with H(2) to yield (Me(5)C(5))(2)U(HNPh)(2). In the latter case, the computed mechanism is the heterolytic activation of H(2) by (Me(5)C(5))(2)U(NPh)(2) to yield (Me(5)C(5))(2)U(H)(HNPh)(NPh), followed by a hydrogen transfer from uranium back to the imido nitrogen atom using one Me(5)C(5) ligand as a proton-relay. The overall mechanism by which hydrogen shifts using a pentamethylcyclopentadienyl ligand as a proton-relay is named Carambole in reference to carom billiards.


Subject(s)
Cyclopentanes/chemistry , Organometallic Compounds/chemistry , Protons , Quantum Theory , Thermodynamics , Ligands
18.
Chem Commun (Camb) ; 50(82): 12318-21, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25182965

ABSTRACT

Theoretical mechanistic calculations (DFT) on the reactivity of [{((Dip)Nacnac)Mg}2] ((Dip)Nacnac = [(DipNCMe)2CH](-), Dip = C6H3(i)Pr2-2,6) towards CO2 were carried out in order to rationalise the experimental formation of a carbonate (major product) and an oxalate (minor product). Despite its apparent similarity to f-element reactivity, the magnesium(I) bimetallic complex yields the carbonate through a concerted type of pathway rather than via a transient oxo-bridged intermediate. The latter is destabilised due to the electrostatic repulsion between the two magnesium centres. The small energy barrier difference between carbonate and oxalate formation (~10 kcal mol(-1)) may allow for the experimentally observed reactivity to be tuned by changing the sterics and/or electronic properties of the magnesium(I) complex.

19.
J Org Chem ; 79(24): 11903-10, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25188526

ABSTRACT

This study describes the mechanism and selectivity pattern of the Pd(0)-catalyzed C(sp(3))-H activation of a prototypical substrate bearing two linear alkyl groups. Experimentally, the use of the Pd/P(t-Bu)3 catalytic system leads to a ca. 7:3 mixture of olefin and benzocyclobutene (BCB) products. The C-H activation step was computed to be favored for the secondary position α to the benzylic carbon over the primary position ß to the benzylic carbon by more than 4 kcal mol(-1), in line with previous selectivity trends on analogous substrates. The five-membered palladacycle obtained through this activation step may then follow two different pathways, which were computationally characterized: (1) decoordination of the protonated base and reductive elimination to give the BCB product and (2) proton transfer to the aryl ligand and base-mediated ß-H elimination to give the olefin product. Experiments conducted with deuterated substrates were in accordance with this mechanism. The difference between the highest activation barriers in the two pathways was computed to be 1.2 kcal mol(-1) in favor of BCB formation. However, the use of a kinetic model revealed the critical influence of the kinetics of dissociation of HCO3(-) formed after the C-H activation step in actually directing the reaction toward either of the two pathways.

20.
Chemistry ; 20(42): 13501-6, 2014 Oct 13.
Article in English | MEDLINE | ID: mdl-25146340

ABSTRACT

The first sulfite [{(((nP,Me) ArO)3 tacn)U(IV) }2 (µ-κ(1) :κ(2) -SO3 )] (tacn=triazacyclononane) and dithionite [{(((nP,Me) ArO)3 tacn)U(IV) }2 (µ-κ(2) :κ(2) -S2 O4 )] complexes of uranium from reaction with gaseous SO2 have been prepared. Additionally, the reductive activation of CO2 was investigated with respect to the rare oxalate [{(((nP,Me) ArO)3 tacn)U(IV) }2 (µ-κ(2) :κ(2) -C2 O4 )] formation. This ultimately provides the unique S2 O4 (2-) /C2 O4 (2-) and SO3 (2-) /CO3 (2-) complex pairs. All new complexes were characterized by a combination of single-crystal X-ray diffraction, elemental analysis, UV/Vis/NIR electronic absorption, IR vibrational, and (1) H NMR spectroscopy, as well as magnetization (VT SQUID) studies. Moreover, density functional theory (DFT) calculations were carried out to gain further insight into the reaction mechanisms. All observations, together with DFT, support the assumption that SO2 and CO2 show similar (dithionite/oxalate) to analogous (sulfite/carbonate) activation behavior with uranium complexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...