Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 12(1): 59, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36864035

ABSTRACT

Emerging photo-induced excitonic processes in transition metal dichalcogenide (TMD) heterobilayers, e.g., interplay of intra- and inter-layer excitons and conversion of excitons to trions, allow new opportunities for ultrathin hybrid photonic devices. However, with the associated large degree of spatial heterogeneity, understanding and controlling their complex competing interactions in TMD heterobilayers at the nanoscale remains a challenge. Here, we present an all-round dynamic control of interlayer-excitons and -trions in a WSe2/Mo0.5 W0.5 Se2 heterobilayer using multifunctional tip-enhanced photoluminescence (TEPL) spectroscopy with <20 nm spatial resolution. Specifically, we demonstrate the bandgap tunable interlayer excitons and the dynamic interconversion between interlayer-trions and -excitons, through the combinational tip-induced engineering of GPa-scale pressure and plasmonic hot electron injection, with simultaneous spectroscopic TEPL measurements. This unique nano-opto-electro-mechanical control approach provides new strategies for developing versatile nano-excitonic/trionic devices using TMD heterobilayers.

2.
ACS Nano ; 15(6): 10472-10479, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34105938

ABSTRACT

Carbon nanotube (CNT) photodiodes are a promising system for high-efficiency photocurrent generation due to the strong Coulomb interactions that can drive carrier multiplication. If the Coulomb interactions are too strong, however, exciton formation can hamper photocurrent generation. Here, we explore, experimentally and theoretically, the effect of the environmental dielectric constant (εenv) on the photocurrent generation process in CNTs. We study individual ultraclean CNTs of known chiral index in a vacuum or dry nitrogen gas (εenv = 1) and oil (εenv = 2.15). The efficiency of photocurrent generation improves by more than an order of magnitude in oil. Two mechanisms explain this improvement. First, the refractive index of the environment optimizes the interference between incident and reflected light. Second, exciton binding energies are reduced in oil, changing the relaxation pathways of photoexcited carriers. We varied the axial electric field in the pn junction from 4 to 14 V/µm. Our measurements at high field indicate that autoionization of second-subband excitons can coexist with carrier multiplication. Dielectric screening makes this coexistence regime more accessible and allows us to reach photocurrent quantum yields greater than 100%.

SELECTION OF CITATIONS
SEARCH DETAIL
...