Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(21): 17994-18004, 2018 May 30.
Article in English | MEDLINE | ID: mdl-29737166

ABSTRACT

Due to the abundance of intrinsic defects in zinc oxide (ZnO), the material properties are often governed by same. Knowledge of the defect chemistry has proven to be highly important, especially in terms of the photocatalytic degradation of pollutants. Given the fact that defect-free materials or structures exhibiting only one type of defect are extremely difficult to produce, it is necessary to evaluate what influence various defects may have when present together in the material. In this study, intentionally defect-rich ZnO nanorod (NR) arrays are grown using a simple low-temperature solution-based growth technique. Upon changing the defect chemistry using rapid thermal annealing (RTA) the material properties are carefully assessed and correlated to the resulting photocatalytic properties. Special focus is put on the investigation of these properties for samples showing strong orange photoluminescence (PL). It is shown that intense orange emitting NR arrays exhibit improved dye-degradation rates under UV-light irradiation. Furthermore, strong dye-adsorption has been observed for some samples. This behavior is found to stem from a graphitic surface structure (e.g., shell) formed during RTA in vacuum. Since orange-luminescent samples also exhibit an enhancement of the dye adsorption a possible interplay and synergy of these two defects is elucidated. Additionally, evidence is presented suggesting that in annealed ZnO NRs structural defects may be responsible for the often observed PL emission at 3.31 eV. However, a clear correlation with the photocatalytic properties could not be established for these defects. Building on the specific findings presented here, this study also presents some more general guidelines which, it is suggested, should be employed when assessing the photocatalytic properties of defect-rich ZnO.

2.
Phys Chem Chem Phys ; 19(19): 12255-12268, 2017 May 17.
Article in English | MEDLINE | ID: mdl-28451671

ABSTRACT

Intentionally defect-rich zinc oxide (ZnO) nanorod-arrays were grown from solution by carefully adjusting the concentration ratio of the growth-precursors used followed by various post-deposition thermal treatments. Post-deposition rapid thermal annealing (RTA) at moderate temperatures (350 °C-550 °C) and in various atmospheres was applied to vary the defect composition of the grown nanorod-arrays. It is demonstrated that, intense, defect-related orange emission occurs solely upon RTA around 450 °C and is essentially independent of the atmosphere used. Extensive materials characterization was carried out in order to evaluate the origin of the orange-luminescent defects and what influence they have on the ZnO material properties. It is concluded that the oxygen vacancy-zinc interstitial defect complex (VO-Zni) is responsible for the orange luminescence in the prepared materials. A kinetic formation mechanism of the VO-Zni complex dependent on the RTA temperature is proposed and shown to be in accordance with the experimental findings. Furthermore it is shown that this bulk deep-level defect could act as a trap state for photo-generated electrons prolonging the charge carrier lifetime of photo-generated holes and therefore improving the charge carrier separation in the material. As a result the photo-current density under simulated sunlight is found to increase by almost 150% over as-grown samples. The potential use of this defective material in applications such as solar water splitting is outlined.

SELECTION OF CITATIONS
SEARCH DETAIL
...