Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Foodborne Pathog Dis ; 4(4): 517-25, 2007.
Article in English | MEDLINE | ID: mdl-18041961

ABSTRACT

OBJECTIVES: To investigate occurrence of Salmonella in raw and ready to eat (RTE) turkey from retail outlets, determine factors associated with its occurrence and antimicrobial-resistance patterns. MATERIALS AND METHODS: A total of 959 turkey products (raw, n = 345; and RTE, n = 614) were purchased in 3 months from four stores in one city in the midwestern United States. Chi-square and logistic regression analyses were used to test for associations of microbial contamination with product type and brand, expiration date, sampling time, and retail store. Antimicrobial resistance of Salmonellae was determined using a National Antimicrobial Resistance Monitoring System (NARMS) panel of antimicrobials. RESULTS: Overall, 2.2% (21/959) of the samples (4.1% [14/345] raw and 1.1% [7/614] RTE) were contaminated with Salmonella. A significant difference in Salmonella occurrence (p < 0.05), between meat type (raw vs. RTE; OR = 4.2, 95% CI = 1.6, 10.8); and sampling month (p < 0.05) was reported, but not between retail stores and product brands. Salmonellae belonged to 6 serotypes: Hadar, Heidelberg, Typhimurium var. Copenhagen, Newport, Saintpaul, and Agona. Salmonellae from raw turkey exhibited higher antimicrobial resistance (53%) compared to those from RTE products (33%). Multidrug resistance was exhibited by 62% of Salmonellae (86% RTE, 50% raw meats). CONCLUSION AND CLINICAL APPLICATIONS: Turkey (both raw and RTE) may occasionally be contaminated with antimicrobial-resistant Salmonellae whose occurrence was influenced by sampling month and meat type. Continued surveillance of Salmonella occurrence in meat products, in particular RTE ones, is warranted in order to ensure a safe food supply.


Subject(s)
Consumer Product Safety , Drug Resistance, Bacterial , Food Contamination/analysis , Meat/microbiology , Salmonella/drug effects , Animals , Colony Count, Microbial , Food Microbiology , Humans , Midwestern United States/epidemiology , Poultry Products/microbiology , Prevalence , Salmonella/classification , Salmonella/isolation & purification , Seasons , Species Specificity , Turkeys
2.
J Food Prot ; 69(5): 1154-8, 2006 May.
Article in English | MEDLINE | ID: mdl-16715819

ABSTRACT

Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157:H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.


Subject(s)
Cattle Diseases/epidemiology , Escherichia coli Infections/veterinary , Escherichia coli O157/isolation & purification , Feces/microbiology , Animals , Cattle , Cattle Diseases/microbiology , Colony Count, Microbial , Disease Reservoirs/veterinary , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Food Contamination/prevention & control , Humans , Male , North Dakota/epidemiology , Prevalence , Random Allocation , Risk Factors , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...