Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(43): 435702, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24076624

ABSTRACT

The structural properties and the strain state of InGaN/GaN superlattices embedded in GaN nanowires were analyzed as a function of superlattice growth temperature, using complementary transmission electron microscopy techniques supplemented by optical analysis using photoluminescence and spatially resolved microphotoluminescence spectroscopy. A truncated pyramidal shape was observed for the 4 nm thick InGaN inclusions, where their (0001¯) central facet was delimited by six-fold {101¯l} facets towards the m-plane sidewalls of the nanowires. The defect content of the nanowires comprised multiple basal stacking faults localized at the GaN base/superlattice interface, causing the formation of zinc-blende cubic regions, and often single stacking faults at the GaN/InGaN bilayer interfaces. No misfit dislocations or cracks were detected in the heterostructure, implying a fully strained configuration. Geometrical phase analysis showed a rather uniform radial distribution of elastic strain in the (0001¯) facet of the InGaN inclusions. Depending on the superlattice growth temperature, the elastic strain energy is partitioned among the successive InGaN/GaN layers in the case of low-temperature growth, while at higher superlattice growth temperature the in-plane tensile misfit strain of the GaN barriers is accommodated through restrained diffusion of indium from the preceding InGaN layers. The corresponding In contents of the central facet were estimated at 0.42 and 0.25, respectively. However, in the latter case, successful reproduction of the experimental electron microscopy images by image simulations was only feasible, allowing for a much higher occupancy of indium adatoms at lattice sites of the semipolar facets, compared to the invariable 25% assigned to the polar facet. Thus, a high complexity in indium incorporation and strain allocation between the different crystallographic facets of the InGaN inclusions is anticipated and supported by the results of photoluminescence and spatially resolved microphotoluminescence spectroscopy.

2.
Nanotechnology ; 24(12): 125201, 2013 Mar 29.
Article in English | MEDLINE | ID: mdl-23459100

ABSTRACT

The optical properties of wurtzite GaN nanowires containing single Al0.14Ga0.86N/GaN quantum discs of different thickness have been investigated. The dependence of the photoluminescence (PL) transition energy on the quantum disc thickness and the thickness of a lateral AlGaN shell has been simulated in the framework of a three-dimensional effective mass model, accounting for the presence of a lateral AlGaN shell, strain state and the piezoelectric and spontaneous polarization. The predicted transition energies are in good agreement with the statistics realized on more than 40 single nanowire emission spectra and PL spectra of ensembles of nanowires. The emission spectra of the single quantum discs exhibit a Lorentzian shape with a homogeneous line width as low as 3 meV. Finally, we discuss the dependence of the interband transition energy on diameter.

3.
J Phys Condens Matter ; 24(15): 156001, 2012 Apr 18.
Article in English | MEDLINE | ID: mdl-22418594

ABSTRACT

The structural and magnetic properties and spin dynamics of dextran coated and uncoated γ-Fe(2)O(3) (maghemite) nanoparticles have been investigated using high resolution transmission electron microscopy (HRTEM), (57)Fe nuclear magnetic resonance (NMR), Mössbauer spectroscopy and dc magnetization measurements. The HRTEM observations indicated a well-crystallized system of ellipsoid-shaped nanoparticles, with an average size of 10 nm. The combined Mössbauer and magnetic study suggested the existence of significant interparticle interactions not only in the uncoated but also in the dextran coated nanoparticle assemblies. The zero-field NMR spectra of the nanoparticles at low temperatures are very similar to those of the bulk material, indicating the same hyperfine field values at saturation in accord with the performed Mössbauer measurements. The T(2) NMR spin-spin relaxation time of the nanoparticles has also been measured as a function of temperature and found to be two orders of magnitude shorter than that of the bulk material. It is shown that the thermal fluctuations in the longitudinal magnetization of the nanoparticles in the low temperature limit may account for the shortening and the temperature dependence of the T(2) relaxation time. Thus, the low temperature NMR results are in accord with the mechanism of collective magnetic excitations, due to the precession of the magnetization around the easy direction of the magnetization at an energy minimum, a mechanism originally proposed to interpret Mössbauer experiments in magnetic nanoparticles. The effect of the surface spins on the NMR relaxation mechanisms is also discussed.


Subject(s)
Dextrans/chemistry , Ferric Compounds/chemistry , Magnetic Phenomena , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Magnetic Resonance Spectroscopy , Spectroscopy, Mossbauer , X-Ray Diffraction
4.
Nano Lett ; 12(1): 259-63, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22132841

ABSTRACT

The photosensitivity of nanocomposite AlN films with embedded silver nanospheres is reported. It stems from localized surface plasmon resonances (LSPR) whose modulation is photoinduced by laser annealing that induces a combined effect of metallic nanoparticle enlargement and dielectric matrix recrystallization; the photoindunced changes of the refractive index of the matrix result in strong spectral shift of LSPR. We demonstrate the utilization of this process for spectrally selective optical encoding into hard, durable, and chemically inert films.


Subject(s)
Inorganic Chemicals/chemistry , Inorganic Chemicals/radiation effects , Molecular Imprinting/methods , Nanostructures/chemistry , Nanostructures/radiation effects , Refractometry/methods , Surface Plasmon Resonance/methods , Hardness , Information Storage and Retrieval/methods , Light , Macromolecular Substances/chemistry , Macromolecular Substances/radiation effects , Materials Testing , Molecular Conformation/radiation effects , Particle Size , Surface Properties/radiation effects
5.
J Hazard Mater ; 142(1-2): 297-304, 2007 Apr 02.
Article in English | MEDLINE | ID: mdl-16987597

ABSTRACT

We apply synchrotron radiation assisted X-ray fluorescence (SR-XRF), SR-XRF mapping as well as micro- and conventional X-ray absorption fine structure (mu-XAFS and XAFS) spectroscopies in order to study the bonding environment of Fe and Zn in vitrified samples that contain electric arc furnace dust from metal processing industries. The samples are studied in the as-cast state as well as after annealing at 900 degrees C. The SR-XRF results demonstrate that annealing does not induce any significant changes in the distribution of either Fe or Zn, in both the as-cast and annealed glasses. The mu-XAFS spectra recorded at the Fe-K and Zn-K edges reveal that the structural role of both Fe and Zn remains unaffected by the annealing procedure. More specifically, Fe forms both FeO(6) and FeO(4) polyhedra, i.e. acts as an intermediate oxide while Zn occupies tetrahedral sites.


Subject(s)
Iron/chemistry , Spectrometry, Fluorescence/methods , Zinc/chemistry , Dust , Environmental Pollutants , Industrial Waste
6.
Waste Manag ; 23(4): 361-71, 2003.
Article in English | MEDLINE | ID: mdl-12781225

ABSTRACT

Lead-rich solid industrial wastes were vitrified by the addition of glass formers in various concentrations, to produce non-toxic vitreous stabilized products that can be freely disposed or used as construction materials. Toxicity of both the as-received industrial solid waste and the stabilized products was determined using standard leaching test procedures. The chemically stable vitreous products were subjected to thermal annealing in order to investigate the extent of crystal separation that could occur during cooling of large pieces of glass. Leaching tests were repeated to investigate the relation between annealing process and chemical stability. X-ray, scanning and transmission electron microscopy techniques were employed to identify the microstructure of stabilized products before and after thermal treatment. Relation between synthesis and processing, chemical stability and microstructure was investigated.


Subject(s)
Hazardous Waste , Lead/chemistry , Refuse Disposal/methods , Glass , Incineration , Lead/analysis , Microscopy, Electron , Solubility
7.
J Dent ; 30(1): 7-10, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11741729

ABSTRACT

OBJECTIVE: A comparative investigation of acrylic denture base surface microhardness, induced through glazing with different photo-activated liquids. MATERIALS AND METHODS: Thermopolymerized acrylic resin Paladon 65 (Kulzer) was used for this study. The samples were mechanically thinned by silicon carbide grinding papers and finally, mechanically polished by alumina pastes. The samples were then glazed with Palaseal, Plaquit and Lightplast-Lack photo-activated liquids. Microhardness tests were carried out via a Zeiss optical microscope equipped with an Anton Paar microhardness tester fitted with a Knoop indenter. RESULTS: Microhardness testing performed on surfaces glazed by Plaquit, Lightplast-Lack, and Palaseal photo-activated liquids showed enhanced microhardness values compared to the mechanically polished acrylic resin denture base material. CONCLUSIONS: Comparative microhardness tests performed on acrylic base resin treated with photo-activated acrylic glazes showed that all increases the surface microhardness. The enhancement of surface microhardness of acrylic denture bases suggests that they are likely to resist wear during service.


Subject(s)
Acrylic Resins , Dental Polishing/methods , Denture Bases , Hardness , Light , Materials Testing , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...