Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetologia ; 55(11): 3021-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22847060

ABSTRACT

AIMS/HYPOTHESIS: Acute hyperglycaemia rapidly suppresses endogenous glucose production (EGP) in non-diabetic individuals, mainly by inhibiting glycogenolysis. Loss of this 'glucose effectiveness' contributes to fasting hyperglycaemia in type 2 diabetes. Elevated NEFA levels characteristic of type 2 diabetes impair glucose effectiveness, although the mechanism is not fully understood. Therefore we examined the impact of increasing NEFA levels on the ability of hyperglycaemia to regulate pathways of EGP. METHODS: We performed 4 h 'pancreatic clamp' studies (somatostatin; basal glucagon/growth hormone/insulin) in seven non-diabetic individuals. Glucose fluxes (D-[6,6-(2)H(2)]glucose) and hepatic glycogen concentrations ((13)C magnetic resonance spectroscopy) were quantified under three conditions: euglycaemia, hyperglycaemia and hyperglycaemia with elevated NEFA (HY-NEFA). RESULTS: EGP was suppressed by hyperglycaemia, but not by HY-NEFA. Hepatic glycogen concentration decreased ~14% with prolonged fasting during euglycaemia and increased by ~12% with hyperglycaemia. In contrast, raising NEFA levels in HY-NEFA caused a substantial ~23% reduction in hepatic glycogen concentration. Moreover, rates of gluconeogenesis were decreased with hyperglycaemia, but increased with HY-NEFA. CONCLUSIONS/INTERPRETATION: Increased NEFA appear to profoundly blunt the ability of hyperglycaemia to inhibit net glycogenolysis under basal hormonal conditions.


Subject(s)
Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Fatty Acids, Nonesterified/blood , Glycogenolysis/physiology , Hyperglycemia/metabolism , Adult , Fasting/physiology , Glucagon/blood , Glucose Clamp Technique/methods , Glycogen/metabolism , Human Growth Hormone/blood , Humans , Insulin/blood , Liver/metabolism , Male , Somatostatin/blood
2.
Diabetologia ; 55(6): 1808-12, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22460760

ABSTRACT

AIMS/HYPOTHESIS: Increased NEFA levels, characteristic of type 2 diabetes mellitus, contribute to skeletal muscle insulin resistance. While NEFA-induced insulin resistance was formerly attributed to decreased glycolysis, it is likely that glucose transport is the rate-limiting defect. Recently, the plant-derived sugar alcohol xylitol has been shown to have favourable metabolic effects in various animal models. Furthermore, its derivative xylulose 5-phosphate may prevent NEFA-induced suppression of glycolysis. We therefore examined whether and how xylitol might prevent NEFA-induced insulin resistance. METHODS: We examined the ability of xylitol to prevent NEFA-induced insulin resistance. Sustained ~1.5-fold elevations in NEFA levels were induced with Intralipid/heparin infusions during 5 h euglycaemic-hyperinsulinaemic clamp studies in 24 conscious non-diabetic Sprague-Dawley rats, with or without infusion of xylitol. RESULTS: Intralipid infusion reduced peripheral glucose uptake by ~25%, predominantly through suppression of glycogen synthesis. Co-infusion of xylitol prevented the NEFA-induced decreases in both glucose uptake and glycogen synthesis. Although glycolysis was increased by xylitol infusion alone, there was minimal NEFA-induced suppression of glycolysis, which was not affected by co-infusion of xylitol. CONCLUSIONS/INTERPRETATION: We conclude that xylitol prevented NEFA-induced insulin resistance, with favourable effects on glycogen synthesis accompanying the improved insulin-mediated glucose uptake. This suggests that this pentose sweetener has beneficial insulin-sensitising effects.


Subject(s)
Fatty Acids, Nonesterified/pharmacology , Insulin Resistance/physiology , Xylitol/pharmacology , Animals , Biological Transport/drug effects , Diabetes Mellitus, Type 2/prevention & control , Glucose/metabolism , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...