Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Part Fibre Toxicol ; 10(1): 58, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24245863

ABSTRACT

BACKGROUND: Increased susceptibility of smokers to ambient PM may potentially promote development of COPD and accelerate already present disease. OBJECTIVES: To characterize the acute and subacute lung function response and inflammatory effects of controlled chamber exposure to concentrated ambient fine particles (CAFP) with MMAD ≤ 2.5 microns in ex-smokers and lifetime smokers. METHODS: Eleven subjects, aged 35-74 years, came to the laboratory 5 times; a training day and two exposure days separated by at least 3 weeks, each with a post-exposure visit 22 h later. Double-blind and counterbalanced exposures to "clean air" (mean 1.5 ± 0.6 µg/m3) or CAFP (mean 108.7 ± 24.8 µg/m3 ) lasted 2 h with subjects at rest. RESULTS: At 3 h post-exposure subjects' DTPA clearance half-time significantly increased by 6.3 min per 100 µg/m3 of CAFP relative to "clean air". At 22 h post-exposure they showed significant reduction of 4.3% per 100 µg/m3 in FEV1 and a significant DLCO decrease by 11.1% per 100 µg/m3 of CAFP relative to "clean air". At both 3 h and 22 h the HDL cholesterol level significantly decreased by 4.5% and 4.1%, respectively. Other blood chemistries and markers of lung injury, inflammation and procoagulant activity were within the normal range of values at any condition. CONCLUSIONS: The results suggest that an acute 2 h resting exposure of smokers and ex-smokers to fine ambient particulate matter may transiently affect pulmonary function (spirometry and DLCO) and increase DTPA clearance half-time. Except for a post exposure decrease in HDL no other markers of pulmonary inflammation, prothrombotic activity and lung injury were significantly affected under the conditions of exposure.


Subject(s)
Air Pollutants/pharmacology , Lung/physiopathology , Smoking/physiopathology , Adult , Aged , Female , Humans , Inhalation Exposure , Male , Middle Aged
4.
Am J Respir Crit Care Med ; 183(9): 1215-21, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21216881

ABSTRACT

RATIONALE: Exposure to ozone causes a decrease in spirometric lung function and an increase in airway inflammation in healthy young adults at concentrations as low as 0.08 ppm, close to the National Ambient Air Quality Standard for ground level ozone. OBJECTIVES: To test whether airway effects occur below the current ozone standard and if they are more pronounced in potentially susceptible individuals, such as those deficient in the antioxidant gene glutathione S-transferase mu 1 (GSTM1). METHODS: Pulmonary function and subjective symptoms were measured in 59 healthy young adults (19-35 yr) immediately before and after exposure to 0.0 (clean air, CA) and 0.06 ppm ozone for 6.6 hours in a chamber while undergoing intermittent moderate exercise. The polymorphonuclear neutrophil (PMN) influx was measured in 24 subjects 16 to 18 hours postexposure. MEASUREMENTS AND MAIN RESULTS: Subjects experienced a significantly greater (P = 0.008) change in FEV(1) (± SE) immediately after exposure to 0.06 ppm ozone compared with CA (-1.71 ± 0.50% vs. -0.002 ± 0.46%). The decrement in FVC was also greater (P = 0.02) after ozone versus CA (-2.32 ± 0.41% vs. -1.13 ± 0.34%). Similarly, changes in %PMN were greater after ozone (54.0 ± 4.6%) than CA (38.3 ± 3.7%) exposure (P < 0.001). Symptom scores were not different between ozone versus CA. There were no significant differences in changes in FEV(1), FVC, and %PMN between subjects with GSTM1-positive and GSTM1-null genotypes. CONCLUSIONS: Exposure of healthy young adults to 0.06 ppm ozone for 6.6 hours causes a significant decrement of FEV(1) and an increase in neutrophilic inflammation in the airways. GSTM1 genotype alone appears to have no significant role in modifying the effects.


Subject(s)
Air Pollutants/toxicity , Inflammation/physiopathology , Inhalation Exposure , Lung/drug effects , Lung/physiopathology , Ozone/toxicity , Adult , Exercise , Female , Forced Expiratory Volume/drug effects , Glutathione Transferase/drug effects , Humans , Male , Neutrophils/drug effects , Reference Values , Respiratory Function Tests/methods , Reverse Transcriptase Polymerase Chain Reaction , Spirometry , Time Factors , Vital Capacity/drug effects , Young Adult
5.
Inhal Toxicol ; 22(7): 593-600, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20384440

ABSTRACT

The effects of low-level ozone exposure (0.08 ppm) on pulmonary function in healthy young adults are well known; however, much less is known about the inflammatory and immunomodulatory effects of low-level ozone in the airways. Techniques such as induced sputum and flow cytometry make it possible to examine airways inflammatory responses and changes in immune cell surface phenotypes following low-level ozone exposure. The purpose of this study was to determine if exposure to 0.08 parts per million ozone for 6.6 h induces inflammation and modifies immune cell surface phenotypes in the airways of healthy adult subjects. Fifteen normal volunteers underwent an established 0.08 part per million ozone exposure protocol to characterize the effect of ozone on airways inflammation and immune cell surface phenotypes. Induced sputum and flow cytometry were used to assess these endpoints 24 h before and 18 h after exposure. The results showed that exposure to 0.08 ppm ozone for 6.6 h induced increased airway neutrophils, monocytes, and dendritic cells and modified the expression of CD14, HLA-DR, CD80, and CD86 on monocytes 18 h following exposure. Exposure to 0.08 parts per million ozone is associated with increased airways inflammation and promotion of antigen-presenting cell phenotypes 18 hours following exposure. These findings need to be replicated in a similar experiment that includes a control air exposure.


Subject(s)
Cell Membrane/drug effects , Immunophenotyping , Inflammation Mediators/adverse effects , Inhalation Exposure/adverse effects , Lung/metabolism , Ozone/adverse effects , Adult , Antigens, Surface/biosynthesis , Antigens, Surface/genetics , Cell Membrane/genetics , Cell Membrane/pathology , Exercise Test/methods , Female , Humans , Inflammation/chemically induced , Inflammation/genetics , Inflammation/immunology , Inflammation Mediators/administration & dosage , Lung/drug effects , Lung/pathology , Male , Monocytes/immunology , Monocytes/metabolism , Monocytes/pathology , Ozone/administration & dosage , Sputum/cytology , Sputum/drug effects , Sputum/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...