Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(13): 23896-23908, 2022 Jun 20.
Article in English | MEDLINE | ID: mdl-36225061

ABSTRACT

Electromagnetic waves in the terahertz (THz) frequency range are widely used in spectroscopy, imaging and sensing. However, commercial, table-top systems covering the entire frequency range from 100 GHz to 10 THz are not available today. Fiber-coupled spectrometers, which employ photoconductive antennas as emitters and receivers, show a bandwidth limited to 6.5 THz and some suffer from spectral artifacts above 4 THz. For these systems, we identify THz absorption in the polar substrate of the photoconductive antenna as the main reason for these limitations. To overcome them, we developed photoconductive membrane (PCM) antennas, which consist of a 1.2 µm-thin InGaAs layer bonded on a Si substrate. These antennas combine efficient THz generation and detection in InGaAs with absorption-free THz transmission through a Si substrate. With these devices, we demonstrate a fiber-coupled THz spectrometer with a total bandwidth of 10 THz and an artifact-free spectrum up to 6 THz. The PCM antennas present a promising path toward fiber-coupled, ultrabroadband THz spectrometers.

2.
Opt Express ; 24(23): 25911-25921, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857330

ABSTRACT

The absolute responsivity of a planar cryogenic radiometer fabricated from micromachined silicon and having carbon nanotubes, as the absorber and thermistor were measured in the visible and far infrared (free-field terahertz) wavelength range by means of detector-based radiometry. The temperature coefficient of the thermistor near 4.8 K and noise equivalent power were evaluated along with independent characterization of the window transmittance and specular reflectance of the nanotube absorber. Measurements of absolute power by means of electrical substitution are compared to the German national standard and the uncertainty of the radiometer responsivity as a function of wavelength is summarized.

3.
Opt Express ; 23(9): 11170-82, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25969213

ABSTRACT

A superconducting transition edge sensor (TES) bolometer operating in the spectral range from 0.1 THz to 3 THz was designed. It is especially intended for Fourier transform spectroscopy and features a higher dynamic range and a highly linear response at a similar response compared to commercially available silicon composite bolometers. The design is based on a thin film metal mesh absorber, a superconducting thermistor and Si3N4 membrane technology. A prototype was set up, characterized and successfully used in first applications.

4.
Opt Express ; 21(12): 14466-73, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23787634

ABSTRACT

The metrology institute in Germany, the Physikalisch-Technische Bundesanstalt (PTB), calibrates the spectral responsivity of THz detectors at 2.52 THz traceable to International System of Units. The Terahertz detector calibration facility is equipped with a standard detector calibrated against a cryogenic radiometer at this frequency. In order to extend this service to a broader spectral range in the THz region a new standard detector was developed. This detector is based on a commercial thermopile detector. Its absorber was modified and characterized by spectroscopic methods with respect to its absorptance and reflectance from 1 THz to 5 THz and at the wavelength of a helium-neon laser in the visible spectral range. This offers the possibility of tracing back the THz power responsivity scale to the more accurate responsivity scale in the visible spectral range and thereby to reduce the uncertainty of detector calibrations in the THz range significantly.


Subject(s)
Energy Transfer , Photometry/instrumentation , Photometry/standards , Terahertz Radiation , Thermography/instrumentation , Thermography/standards , Equipment Design , Equipment Failure Analysis , Internationality
5.
Opt Express ; 18(21): 21804-14, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-20941081

ABSTRACT

Precision power measurements of terahertz (THz) radiation are required to establish metrological applications in the THz spectral range. However, traceability to the International System of Units (SI) has been missing in the THz region in the past. The Physikalisch-Technische Bundesanstalt (PTB), as the national metrology institute of Germany, determines the spectral responsivity of detectors for THz radiation by using two complementary optical methods: source- and detector-based radiometry. Both approaches have been successfully prototyped, and a pyroelectric THz detector with a well-defined aperture is used to verify the consistency of the two independent calibration methods. These primary investigations led to the design of a new measurement facility for the determination of THz radiant power and the responsivity calibration of THz detectors traceable to the SI.


Subject(s)
Optics and Photonics , Terahertz Radiation , Terahertz Spectroscopy/methods , Algorithms , Calibration , Equipment Design , Radiometry/methods , Spectrophotometry, Infrared/methods , Temperature , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...