Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 9(95): eadj7970, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701193

ABSTRACT

Understanding the mechanisms that regulate T cell immunity is critical for the development of effective therapies for diseases associated with T cell dysfunction, including autoimmune diseases, chronic infections, and cancer. Co-inhibitory "checkpoint molecules," such as programmed cell death protein-1, balance excessive or prolonged immune activation by T cell-intrinsic signaling. Here, by screening for mediators of natural killer (NK) cell recognition on T cells, we identified the immunoglobulin superfamily ligand B7H6 to be highly expressed by activated T cells, including patient-infused CD19-targeting chimeric antigen receptor (CAR) T cells. Unlike other checkpoint molecules, B7H6 mediated NKp30-dependent recognition and subsequent cytolysis of activated T cells by NK cells. B7H6+ T cells were prevalent in the tissue and blood of several diseases, and their abundance in tumor tissue positively correlated with clinical response in a cohort of patients with immune checkpoint inhibitor-treated esophageal cancer. In humanized mouse models, NK cell surveillance via B7H6 limited the persistence and antitumor activity of CAR T cells, and its genetic deletion enhanced T cell proliferation and persistence. Together, we provide evidence of B7H6 protein expression by activated T cells and suggest the B7H6-NKp30 axis as a therapeutically actionable NK cell-dependent immune checkpoint that regulates human T cell function.


Subject(s)
B7 Antigens , Killer Cells, Natural , T-Lymphocytes , Humans , Killer Cells, Natural/immunology , Animals , Mice , B7 Antigens/immunology , T-Lymphocytes/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Lymphocyte Activation/immunology , Female , Esophageal Neoplasms/immunology
2.
J Hematol Oncol ; 16(1): 79, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481608

ABSTRACT

BACKGROUND: Third-generation chimeric antigen receptor (CAR)-engineered T cells (CARTs) might improve clinical outcome of patients with B cell malignancies. This is the first report on a third-generation CART dose-escalating, phase-1/2 investigator-initiated trial treating adult patients with refractory and/or relapsed (r/r) acute lymphoblastic leukemia (ALL). METHODS: Thirteen patients were treated with escalating doses of CD19-directed CARTs between 1 × 106 and 50 × 106 CARTs/m2. Leukapheresis, manufacturing and administration of CARTs were performed in-house. RESULTS: For all patients, CART manufacturing was feasible. None of the patients developed any grade of Immune effector cell-associated neurotoxicity syndrome (ICANS) or a higher-grade (≥ grade III) catokine release syndrome (CRS). CART expansion and long-term CART persistence were evident in the peripheral blood (PB) of evaluable patients. At end of study on day 90 after CARTs, ten patients were evaluable for response: Eight patients (80%) achieved a complete remission (CR), including five patients (50%) with minimal residual disease (MRD)-negative CR. Response and outcome were associated with the administered CART dose. At 1-year follow-up, median overall survival was not reached and progression-free survival (PFS) was 38%. Median PFS was reached on day 120. Lack of CD39-expression on memory-like T cells was more frequent in CART products of responders when compared to CART products of non-responders. After CART administration, higher CD8 + and γδ-T cell frequencies, a physiological pattern of immune cells and lower monocyte counts in the PB were associated with response. CONCLUSION: In conclusion, third-generation CARTs were associated with promising clinical efficacy and remarkably low procedure-specific toxicity, thereby opening new therapeutic perspectives for patients with r/r ALL. Trial registration This trial was registered at www. CLINICALTRIALS: gov as NCT03676504.


Subject(s)
Neurotoxicity Syndromes , Humans , Adult , Leukapheresis , Adaptor Proteins, Signal Transducing , Antigens, CD19/therapeutic use
3.
Int J Mol Med ; 52(1)2023 Jul.
Article in English | MEDLINE | ID: mdl-37264971

ABSTRACT

Fetal bovine serum (FBS) or human serum is widely used in the production of chimeric antigen receptor (CAR) T­cells. In order to overcome a lot­to­lot inconsistency, the use of chemically defined medium that is free of animal-components would be highly desirable. The present study compared three serum­free media [Prime­XV™ T Cell CDM, Fujifilm™ (FF), LymphoONE™ T­Cell Expansion Xeno­Free Medium, Takara Bio™ (TB) and TCM GMP­Prototype, CellGenix™ (CG)] to the standard CAR T­cell medium containing FBS (RCF). After 12 days of CD19.CAR T­cell culture, the expansion, viability, transduction efficiency and phenotype were assessed using flow cytometry. The functionality of CAR T­cells was evaluated using intracellular staining, a chromium release assay and a long­term co­culture assay. Expansion and viability did not differ between the CAR T­cells generated in serum­free media compared to the standard FBS­containing medium. The CG CAR T­cells had a statistically significant higher frequency of IFNγ+ and IFNγ+TNF­α+ CAR T­cells than the CAR T­cells cultured with FBS (22.5 vs. 7.6%, P=0.0194; 15.3 vs. 6.2%, P=0.0399, respectively) as detected by intracellular cytokine staining. The CAR T­cells generated with serum­free media exhibited a higher cytotoxicity than the CAR T­cells cultured with FBS in the evaluation by chromium release assay [CG vs. RCF (P=0.0182), FF vs. RCF (P=0.0482) and TB vs. RCF (P=0.0482)]. Phenotyping on day 12 of CAR T­cell production did not reveal a significant difference in the expression of the exhaustion markers, programmed cell death protein 1, lymphocyte­activation gene 3 and T­cell immunoglobulin and mucin­domain containing­3. The CAR T­cells cultured in FF had a higher percentage of central memory CAR T­cells (40.0 vs. 14.3%, P=0.0470) than the CAR T­cells cultured with FBS, whereas the CAR T­cells in FF (6.2 vs. 24.2%, P=0.0029) and CG (11.0% vs. 24.2%, P=0.0468) had a lower frequency of naïve CAR T­cells. On the whole, the present study demonstrates that in general, the functionality and expansion of CAR T cells are maintained in serum­free media. Given the advantages of freedom from bovine material and consistent quality, serum­free media hold promise for the future development of the field of GMP manufacturing of CAR T­cells.


Subject(s)
Cytokines , T-Lymphocytes , Animals , Humans , Culture Media, Serum-Free/metabolism , T-Lymphocytes/metabolism , Coculture Techniques , Cytokines/metabolism , Chromium
4.
Int J Mol Sci ; 24(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36768267

ABSTRACT

The transcription factor SOX11 is a tumor-associated antigen with low expression in normal cells, but overexpression in glioblastoma (GBM). So far, conventional surgery, chemotherapy, and radiotherapy have not substantially improved the dismal prognosis of relapsed/refractory GBM patients. Immunotherapy is considered a promising strategy against GBM, but there is a fervent need for better immunotargets in GBM. To this end, we performed an in silico prediction study on SOX11, which primarily yielded ten promising HLA-A*0201-restricted peptides derived from SOX11. We defined a novel peptide FMACSPVAL, which had the highest score according to in silico prediction (6.02 nM by NetMHC-4.0) and showed an exquisite binding affinity to the HLA-A*0201 molecule in the peptide-binding assays. In the IFN-γ ELISPOT assays, FMACSPVAL demonstrated a high efficiency for generating SOX11-specific CD8+ T cells. Nine out of thirty-two healthy donors showed a positive response to SOX11, as assessed by the ELISPOT assays. Therefore, this novel antigen peptide epitope seems to be promising as a target for T cell-based immunotherapy in GBM. The adoptive transfer of in vitro elicited SOX11-specific CD8+ T cells constitutes a potential approach for the treatment of GBM patients.


Subject(s)
Glioblastoma , Glioma , Humans , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Glioma/metabolism , Glioblastoma/metabolism , Peptides/chemistry , Immunotherapy , T-Lymphocytes, Cytotoxic , SOXC Transcription Factors/metabolism
5.
Int J Mol Sci ; 23(2)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35055086

ABSTRACT

Chimeric-antigen-receptor (CAR)-T-cell therapy is already widely used to treat patients who are relapsed or refractory to chemotherapy, antibodies, or stem-cell transplantation. Multiple myeloma still constitutes an incurable disease. CAR-T-cell therapy that targets BCMA (B-cell maturation antigen) is currently revolutionizing the treatment of those patients. To monitor and improve treatment outcomes, methods to detect CAR-T cells in human peripheral blood are highly desirable. In this study, three different detection reagents for staining BCMA-CAR-T cells by flow cytometry were compared. Moreover, a quantitative polymerase chain reaction (qPCR) to detect BCMA-CAR-T cells was established. By applying a cell-titration experiment of BCMA-CAR-T cells, both methods were compared head-to-head. In flow-cytometric analysis, the detection reagents used in this study could all detect BCMA-CAR-T cells at a similar level. The results of false-positive background staining differed as follows (standard deviation): the BCMA-detection reagent used on the control revealed a background staining of 0.04% (±0.02%), for the PE-labeled human BCMA peptide it was 0.25% (±0.06%) and for the polyclonal anti-human IgG antibody it was 7.2% (±9.2%). The ability to detect BCMA-CAR-T cells down to a concentration of 0.4% was similar for qPCR and flow cytometry. The qPCR could detect even lower concentrations (0.02-0.01%). In summary, BCMA-CAR-T-cell monitoring can be reliably performed by both flow cytometry and qPCR. In flow cytometry, reagents with low background staining should be preferred.


Subject(s)
B-Cell Maturation Antigen/metabolism , Flow Cytometry , Polymerase Chain Reaction , Receptors, Chimeric Antigen/metabolism , T-Lymphocytes/metabolism , B-Cell Maturation Antigen/genetics , Biomarkers , Flow Cytometry/methods , Flow Cytometry/standards , Humans , Immunophenotyping , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/standards , Polymerase Chain Reaction/methods , Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction , Receptors, Chimeric Antigen/genetics , Reproducibility of Results , Sensitivity and Specificity , T-Lymphocytes/immunology
6.
J Immunol ; 202(2): 618-624, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30530481

ABSTRACT

Adenoviruses are a major cause of infectious mortality in children following allogeneic hematopoietic stem cell transplantation, with adoptive transfer of adenovirus-specific T cells being an effective therapeutic approach. We have previously shown that T cells specific for the peptide epitope LTDLGQNLLY were protective. In this study, we aimed to establish a viral dissemination assay to measure the antiviral capacity of T cells specific for this and other peptide epitopes in an infectious setting. We used replication-competent adenovirus 11 (Ad11pGFP) and adenovirus 5 containing adenovirus 35 fiber (Ad5F35GFP) viruses and T cells specific for HLA-A*01-restricted LTDLGQNLLY, HLA-B*07-restricted KPYSGTAYNAL, and HLA-A*02-restricted LLDQLIEEV peptide epitopes. T cells in PBMC from healthy donors were expanded with peptide and IL-2 or treated with IL-2 alone to serve as nonstimulated control cells, and then these expanded or nonstimulated CD8+ cells were purified and cocultured with autologous monocytes infected with adenovirus at low multiplicity of infection. After 3 d, the number of infected GFP+ monocytes and, hence, viral dissemination was quantified by flow cytometry. T cells expanded with LTDLGQNLLY peptide from multiple HLA-A*01+ donors prevented adenovirus dissemination, and nonstimulated T cells did not prevent dissemination, thus, indicating that LTDLGQNLLY-specific T cells have high antiviral capacity. Similarly, expanded KPYSGTAYNAL- and LLDQLIEEV-specific T cells could prevent viral dissemination. However, the frequency of expanded T cells specific for these last two epitopes was variable between donors with consequent variable prevention of adenoviral dissemination. Taken together, we demonstrate that T cells specific for three peptide epitopes, from both structural and nonstructural proteins, can prevent adenoviral dissemination and provide a novel method to measure the antiviral capacity of adenovirus-specific T cell responses.


Subject(s)
Adenoviridae Infections/immunology , Adenoviridae/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Antigens, Viral/immunology , Child , Cytotoxicity, Immunologic , Flow Cytometry , HLA-A1 Antigen/immunology , HLA-A2 Antigen/immunology , HLA-B7 Antigen/immunology , Humans , Interleukin-2/pharmacology , Leukocytes, Mononuclear/immunology , Peptides/immunology
7.
Viral Immunol ; 30(3): 149-156, 2017 04.
Article in English | MEDLINE | ID: mdl-28085643

ABSTRACT

Infection with adenovirus is a major cause of infectious mortality in children following hematopoietic stem-cell transplantation. While adoptive transfer of epitope-specific T cells is a particularly effective therapeutic approach, there are few suitable adenoviral peptide epitopes described to date. Here, we describe the adenoviral peptide epitope FRKDVNMVL from hexon protein, and its variant FRKDVNMIL, that is restricted by human leukocyte antigen (HLA)-C*0702. Since HLA-C*0702 can be recognized by both T cells and natural killer (NK) cells, we characterized responses by both cell types. T cells specific for FRKDVNMVL were detected in peripheral blood mononuclear cells expanded from eight of ten healthy HLA-typed donors by peptide-HLA multimer staining, and could also be detected by cultured interferon γ ELISpot assays. Surprisingly, HLA-C*0702 was not downregulated during infection, in contrast to the marked downregulation of HLA-A*0201, suggesting that adenovirus cannot evade T cell responses to HLA-C*0702-restricted peptide epitopes. By contrast, NK responses were inhibited following adenoviral peptide presentation. Notably, presentation of the FRKDVNMVL peptide enhanced binding of HLA-C*0702 to the inhibitory receptor KIR2DL3 and decreased NK cytotoxic responses, suggesting that adenoviruses may use this peptide to evade NK responses. Given the immunodominance of FRKDVNMVL-specific T cell responses, apparent lack of HLA-C*0702 downregulation during infection, and the high frequency of this allotype, this peptide epitope may be particularly useful for adoptive T cell transfer therapy of adenovirus infection.


Subject(s)
Adenoviruses, Human/immunology , Antigen Presentation , Epitopes, T-Lymphocyte/metabolism , HLA-C Antigens/metabolism , Immune Evasion , Killer Cells, Natural/immunology , T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...