Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 3374, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32612259

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

2.
Nat Commun ; 10(1): 5773, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31852904

ABSTRACT

The Nd isotope composition of seawater has been used to reconstruct past changes in the contribution of different water masses to the deep ocean. In the absence of contrary information, the Nd isotope compositions of endmember water masses are usually assumed constant during the Quaternary. Here we show that the Nd isotope composition of North Atlantic Deep Water (NADW), a major component of the global overturning ocean circulation, was significantly more radiogenic than modern during the Last Glacial Maximum (LGM), and shifted towards modern values during the deglaciation. We propose that weathering contributions of unradiogenic Nd modulated by the North American Ice Sheet dominated the evolution of the NADW Nd isotope endmember. If water mass mixing dominated the distribution of deep glacial Atlantic Nd isotopes, our results would imply a larger fraction of NADW in the deep Atlantic during the LGM and deglaciation than reconstructed with a constant northern endmember.

3.
Nat Commun ; 9(1): 3077, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082732

ABSTRACT

Paleoclimate reconstructions are only as good as their chronology. In particular, different chronological assumptions for marine sediment cores can lead to different reconstructions of ocean ventilation age and atmosphere-ocean carbon exchange history. Here we build the first high-resolution chronology that is free of the dating uncertainties common in marine sediment records, based on radiocarbon dating twigs found with computed tomography scans in two cores from the Eastern Equatorial Pacific (EEP). With this accurate chronology, we show that the ventilation ages of the EEP thermocline and intermediate waters were similar to today during the Last Glacial Maximum and deglaciation, in contradiction with previous studies. Our results suggest that the glacial respired carbon pool in the EEP was not significantly older than today, and that the deglacial strengthening of the equatorial Pacific carbon source was probably driven by low-latitude processes rather than an increased subsurface supply of upwelled carbon from high-latitude oceans.

4.
Nature ; 556(7700): 227-230, 2018 04.
Article in English | MEDLINE | ID: mdl-29643484

ABSTRACT

The Atlantic meridional overturning circulation (AMOC) is a system of ocean currents that has an essential role in Earth's climate, redistributing heat and influencing the carbon cycle1, 2. The AMOC has been shown to be weakening in recent years 1 ; this decline may reflect decadal-scale variability in convection in the Labrador Sea, but short observational datasets preclude a longer-term perspective on the modern state and variability of Labrador Sea convection and the AMOC1, 3-5. Here we provide several lines of palaeo-oceanographic evidence that Labrador Sea deep convection and the AMOC have been anomalously weak over the past 150 years or so (since the end of the Little Ice Age, LIA, approximately AD 1850) compared with the preceding 1,500 years. Our palaeoclimate reconstructions indicate that the transition occurred either as a predominantly abrupt shift towards the end of the LIA, or as a more gradual, continued decline over the past 150 years; this ambiguity probably arises from non-AMOC influences on the various proxies or from the different sensitivities of these proxies to individual components of the AMOC. We suggest that enhanced freshwater fluxes from the Arctic and Nordic seas towards the end of the LIA-sourced from melting glaciers and thickened sea ice that developed earlier in the LIA-weakened Labrador Sea convection and the AMOC. The lack of a subsequent recovery may have resulted from hysteresis or from twentieth-century melting of the Greenland Ice Sheet 6 . Our results suggest that recent decadal variability in Labrador Sea convection and the AMOC has occurred during an atypical, weak background state. Future work should aim to constrain the roles of internal climate variability and early anthropogenic forcing in the AMOC weakening described here.


Subject(s)
Convection , Oceans and Seas , Seawater/analysis , Water Movements , Arctic Regions , Atlantic Ocean , Climate Change/statistics & numerical data , Fresh Water/analysis , Greenland , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Medieval , Ice Cover/chemistry , Newfoundland and Labrador , Reproducibility of Results , Time Factors
5.
Proc Natl Acad Sci U S A ; 114(11): 2831-2835, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28193884

ABSTRACT

The prevailing view of western Atlantic hydrography during the Last Glacial Maximum (LGM) calls for transport and intermixing of deep southern and intermediate northern end members. However, δ13C and Δ14C results on foraminifera from a sediment core at 5.0 km in the northern subtropics show that there may have also been a northern source of relatively young, very dense, nutrient-depleted water during the LGM (18 ky to 21 ky ago). These results, when integrated with data from other western North Atlantic locations, indicate that the ocean was poorly ventilated at 4.2 km, with better ventilation above and below that depth. If this is a signal of water mass source and not nutrient storage, it would indicate that a previously unrecognized deep water end member originated along the western margin of the Labrador Sea, analogous to dense water formation today around Antarctica and in the Okhotsk Sea.

6.
Sci Adv ; 2(8): e1600883, 2016 08.
Article in English | MEDLINE | ID: mdl-27540590

ABSTRACT

The formation of the Isthmus of Panama stands as one of the greatest natural events of the Cenozoic, driving profound biotic transformations on land and in the oceans. Some recent studies suggest that the Isthmus formed many millions of years earlier than the widely recognized age of approximately 3 million years ago (Ma), a result that if true would revolutionize our understanding of environmental, ecological, and evolutionary change across the Americas. To bring clarity to the question of when the Isthmus of Panama formed, we provide an exhaustive review and reanalysis of geological, paleontological, and molecular records. These independent lines of evidence converge upon a cohesive narrative of gradually emerging land and constricting seaways, with formation of the Isthmus of Panama sensu stricto around 2.8 Ma. The evidence used to support an older isthmus is inconclusive, and we caution against the uncritical acceptance of an isthmus before the Pliocene.


Subject(s)
Biological Evolution , Geology , Oceans and Seas , Phylogeography , Americas , Ecosystem , Environment , Fossils , Paleontology , Panama
7.
Science ; 327(5961): 75-8, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20044573

ABSTRACT

Understanding changes in ocean circulation during the last deglaciation is crucial to unraveling the dynamics of glacial-interglacial and millennial climate shifts. We used neodymium isotope measurements on postdepositional iron-manganese oxide coatings precipitated on planktonic foraminifera to reconstruct changes in the bottom water source of the deep western North Atlantic at the Bermuda Rise. Comparison of our deep water source record with overturning strength proxies shows that both the deep water mass source and the overturning rate shifted rapidly and synchronously during the last deglacial transition. In contrast, any freshwater perturbation caused by Heinrich event 1 could have only affected shallow overturning. These findings show how changes in upper-ocean overturning associated with millennial-scale events differ from those associated with whole-ocean deglacial climate events.

8.
Science ; 310(5753): 1469-73, 2005 Dec 02.
Article in English | MEDLINE | ID: mdl-16322451

ABSTRACT

We present a detailed history of glacial to Holocene radiocarbon in the deep western North Atlantic from deep-sea corals and paired benthic-planktonic foraminifera. The deglaciation is marked by switches between radiocarbon-enriched and -depleted waters, leading to large radiocarbon gradients in the water column. These changes played an important role in modulating atmospheric radiocarbon. The deep-ocean record supports the notion of a bipolar seesaw with increased Northern-source deep-water formation linked to Northern Hemisphere warming and the reverse. In contrast, the more frequent radiocarbon variations in the intermediate/deep ocean are associated with roughly synchronous changes at the poles.


Subject(s)
Anthozoa , Climate , Eukaryota , Ice Cover , Animals , Atlantic Ocean , Carbon Isotopes , Carbon Radioisotopes , Time , Zooplankton
9.
Science ; 298(5596): 1224-7, 2002 Nov 08.
Article in English | MEDLINE | ID: mdl-12376593

ABSTRACT

Chronologies for Late Quaternary marine sediment records are usually based on radiocarbon ages of planktonic foraminifera. Signals carried by other sedimentary components measured in parallel can provide complementary paleoclimate information. A key premise is that microfossils and other indicators within a given sediment horizon are of equal age. We show here that haptophyte-derived alkenones isolated from Bermuda Rise drift sediments are up to 7000 years older than coexisting planktonic foraminifera. This temporal offset, which is apparently due to lateral transport of alkenones on fine-grained particles from the Nova Scotian margin, markedly influences molecular estimates of sea surface temperatures. More broadly, the observation raises questions about both the temporal and the geographic fidelity of paleoenvironmental records encoded by readily transported components of sediments.

SELECTION OF CITATIONS
SEARCH DETAIL
...