Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vox Sang ; 112(8): 713-722, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28960367

ABSTRACT

BACKGROUND AND OBJECTIVES: Interventions to prevent and detect bacterial contamination of platelet concentrates (PCs) have reduced, but not eliminated the sepsis risk. Standardized bacterial strains are needed to validate detection and pathogen reduction technologies in PCs. Following the establishment of the First International Reference Repository of Platelet Transfusion-Relevant Bacterial Reference Strains (the 'repository'), the World Health Organization (WHO) Expert Committee on Biological Standardisation (ECBS) endorsed further repository expansion. MATERIALS AND METHODS: Sixteen bacterial strains, including the four repository strains, were distributed from the Paul-Ehrlich-Institut (PEI) to 14 laboratories in 10 countries for enumeration, identification and growth measurement on days 2, 4 and 7 after low spiking levels [10-25 colony-forming units (CFU)/PC bag]. Spore-forming (Bacillus cereusPEI-B-P-07-S, Bacillus thuringiensisPEI-B-P-57-S), Gram-negative (Enterobacter cloacaePEI-B-P-43, Morganella morganiiPEI-B-P-74, PEI-B-P-91, Proteus mirabilisPEI-B-P-55, Pseudomonas fluorescensPEI-B-P-77, Salmonella choleraesuisPEI-B-P-78, Serratia marcescensPEI-B-P-56) and Gram-positive (Staphylococcus aureusPEI-B-P-63, Streptococcus dysgalactiaePEI-B-P-71, Streptococcus bovisPEI-B-P-61) strains were evaluated. RESULTS: Bacterial viability was conserved after transport to the participating laboratories with one exception (M. morganiiPEI-B-P-74). All other strains showed moderate-to-excellent growth. Bacillus cereus, B. thuringiensis, E. coli, K. pneumoniae, P. fluorescens, S. marcescens, S. aureus and S. dysgalactiae grew to >106 CFU/ml by day 2. Enterobacter cloacae, P. mirabilis, S. epidermidis, S. bovis and S. pyogenes achieved >106 CFU/ml at day 4. Growth of S. choleraesuis was lower and highly variable. CONCLUSION: The WHO ECBS approved all bacterial strains (except M. morganiiPEI-B-P-74 and S. choleraesuisPEI-B-P-78) for repository enlargement. The strains were stable, suitable for spiking with low CFU numbers, and proliferation was independent of the PC donor.


Subject(s)
Blood Platelets/microbiology , Blood Safety/standards , Platelet Transfusion , Biological Specimen Banks , Escherichia coli/growth & development , Humans , Klebsiella pneumoniae/growth & development , Reference Standards , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/growth & development , World Health Organization
2.
Vox Sang ; 111(3): 235-241, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27281512

ABSTRACT

BACKGROUND: Dengue viruses (DENV 1-4) are emerging across the world, and these viruses pose a risk to transfusion safety. Pathogen inactivation may be an alternative approach for managing the risk of DENV transfusion transmission. This study aimed to investigate the ability of riboflavin and UV light to inactivate DENV 1-4 in platelet concentrates. MATERIALS AND METHODS: DENV 1-4 were spiked into buffy coat-derived platelet concentrates in additive solution (SSP+) before being treated with riboflavin and UV light. Infectious virus was quantified pre- and posttreatment, and the reduction in viral infectivity was calculated. RESULTS: All four DENV serotypes were modestly reduced after treatment. The greatest amount of reduction in infectivity was observed for DENV-4 (1·81 log reduction) followed by DENV-3 (1·71 log reduction), DENV-2 (1·45 log reduction) and then DENV-1 (1·28 log reduction). CONCLUSION: Our study demonstrates that DENV 1-4 titres are modestly reduced following treatment with riboflavin and UV light. With the increasing number of transfusion-transmitted cases of DENV around the globe, and the increasing incidence and geographical distribution of DENV, additional approaches for maintaining blood safety may be required in the future.


Subject(s)
Dengue Virus/physiology , Photosensitizing Agents/pharmacology , Riboflavin/pharmacology , Ultraviolet Rays , Virus Inactivation/drug effects , Blood Platelets/cytology , Blood Platelets/virology , Blood Safety , Dengue Virus/genetics , Dengue Virus/metabolism , Humans , Platelet Transfusion , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , Serogroup , Virus Inactivation/radiation effects
3.
Vox Sang ; 87(2): 82-90, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15355498

ABSTRACT

BACKGROUND AND OBJECTIVES: A pathogen-reduction technology (PRT) system using riboflavin and light has been developed for the treatment of platelet concentrates (PC) obtained by either buffy coat preparation (BCPC) or apheresis procedures (APPC). The aim of this study was to evaluate the effects of the treatment process on in vitro cell quality and on riboflavin conversion in PC. MATERIALS AND METHODS: BCPC were prepared with the Compomat G4 from whole blood which had been stored overnight after collection. APPC were obtained using the TRIMA apheresis procedure. Both PC products had been stored for 18-24 h prior to PRT treatment. BCPC and APPC were treated with PRT on day 2 and day 1 of shelf-life, respectively. The treated PCs were then maintained for an additional 5 days after the PRT treatment. A panel of cell quality assays and high-performance liquid chromatography (HPLC) analysis were performed. RESULTS: Cell counts and plasma lactate dehydrogenase (LDH) levels during storage indicated that PRT did not induce significant cell lysis. Acceleration of a decrease in glucose and an increase in lactate was observed for treated PCs, but no significant differences were observed between treated BCPC and APPC. The pH of treated samples remained above 7.0, although was lower than that of the control. Platelet morphology of BCPC and APPC was well preserved. P-selectin expression indicated significant platelet activation when compared with control PC (BCPC on day 6: 39% vs. 12%; APPC on day 5: 35% vs. 18%). Both P-selectin expression and microparticle formation were not significantly different between treated BCPC and APPC during storage. The JC-1 assay also displayed no loss of mitochondria integrity during the storage of treated products. Approximately 20% of riboflavin converted into photoproducts, including lumichrome. CONCLUSIONS: PRT treatment had an effect on the development of the normal platelet storage lesion at a level which seems tolerable for clinical usage.


Subject(s)
Blood Component Removal , Blood Platelets/microbiology , Light , Riboflavin/pharmacology , Blood Component Removal/methods , Blood Platelets/chemistry , Blood Platelets/drug effects , Blood Platelets/physiology , Blood Preservation , Chromatography, Liquid , Glucose/analysis , Humans , Hydrogen-Ion Concentration , L-Lactate Dehydrogenase/blood , Lactic Acid/analysis , P-Selectin/blood , Platelet Activation/physiology , Platelet Count , Tissue Preservation
SELECTION OF CITATIONS
SEARCH DETAIL
...