Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Fertil Dev ; 35(11): 575-588, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37308165

ABSTRACT

CONTEXT: In vitro maturation is an important process in the production of embryos. It has been shown that three cytokines, fibroblast growth factor 2, leukemia inhibitory factor and insulin-like growth factor 1 (FLI), increased efficiency of in vitro maturation, somatic cell nuclear transfer (SCNT) blastocyst production, and in vivo development of genetically engineered piglets. AIMS: Assess effects of FLI on oocyte maturation, quality of oocytes, and embryo development in bovine in vitro fertilisation (IVF) and SCNT. KEY RESULTS: Cytokine supplementation resulted in significant increases in maturation rates and decreased levels of reactive oxygen species. Oocytes matured in FLI had increased blastocyst rates when used in IVF (35.6%vs 27.3%, P <0.05) and SCNT (40.6%vs 25.7%, P <0.05). SCNT blastocysts contained significantly more inner cell mass and trophectodermal cells when compared to the control group. Importantly, SCNT embryos derived from oocytes matured in FLI medium resulted in a four-fold increase in full-term development compared to control medium (23.3%vs 5.3%, P <0.05). Relative mRNA expression analysis of 37 genes associated with embryonic and fetal development revealed one gene had differential transcript abundance in metaphase II oocytes, nine genes at the 8-cell stage, 10 genes at the blastocyst stage in IVF embryos and four genes at the blastocyst stage in SCNT embryos. CONCLUSIONS: Cytokine supplementation increased efficiency of in vitro production of IVF and SCNT embryos and in vivo development of SCNT embryos to term. IMPLICATIONS: Cytokine supplementation is beneficial to embryo culture systems, which may shed light on requirements of early embryo development.


Subject(s)
Cytokines , Nuclear Transfer Techniques , Animals , Cattle , Swine , Cytokines/genetics , Cytokines/metabolism , Nuclear Transfer Techniques/veterinary , Embryonic Development , Fertilization in Vitro/veterinary , Blastocyst/metabolism , Oocytes/metabolism , Dietary Supplements , Cloning, Organism
2.
FASEB Bioadv ; 3(10): 841-854, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34632318

ABSTRACT

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.

SELECTION OF CITATIONS
SEARCH DETAIL
...