Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(4): 114022, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38568806

ABSTRACT

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. The initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus: SasG-I and SasG-II. Structural analyses of SasG-II identify a nonaromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicate that SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment results in different binding profiles between SasG-I and SasG-II on skin cells. In addition, SasG-mediated adhesion is recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.


Subject(s)
Bacterial Adhesion , Keratinocytes , Skin , Staphylococcus aureus , Staphylococcus aureus/metabolism , Humans , Skin/microbiology , Skin/metabolism , Keratinocytes/microbiology , Keratinocytes/metabolism , Lectins/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Phylogeny , Protein Binding
2.
mBio ; 15(4): e0348323, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38511930

ABSTRACT

Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.


Subject(s)
Membrane Proteins , Staphylococcal Infections , Humans , Animals , Mice , Membrane Proteins/metabolism , Staphylococcus aureus/metabolism , Bacterial Proteins/metabolism , Peptide Hydrolases/metabolism , Trypsin/metabolism , Biofilms , Staphylococcal Infections/metabolism
3.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38045275

ABSTRACT

Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.

5.
Cell Rep ; 42(6): 112540, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37227819

ABSTRACT

Pseudomonas aeruginosa and Staphylococcus aureus are among the most frequently isolated bacterial species from polymicrobial infections of patients with cystic fibrosis and chronic wounds. We apply mass spectrometry guided interaction studies to determine how chemical interaction shapes the fitness and community structure during co-infection of these two pathogens. We demonstrate that S. aureus is equipped with an elegant mechanism to inactivate pyochelin via the yet uncharacterized methyltransferase Spm (staphylococcal pyochelin methyltransferase). Methylation of pyochelin abolishes the siderophore activity of pyochelin and significantly lowers pyochelin-mediated intracellular reactive oxygen species (ROS) production in S. aureus. In a murine wound co-infection model, an S. aureus mutant unable to methylate pyochelin shows significantly lower fitness compared with its parental strain. Thus, Spm-mediated pyochelin methylation is a mechanism to increase S. aureus survival during in vivo competition with P. aeruginosa.


Subject(s)
Coinfection , Staphylococcal Infections , Humans , Mice , Animals , Staphylococcus aureus/physiology , Pseudomonas aeruginosa/metabolism , Coinfection/microbiology , Staphylococcal Infections/microbiology
6.
Lab Med ; 54(3): 227-234, 2023 May 02.
Article in English | MEDLINE | ID: mdl-36226897

ABSTRACT

A burdensome, atypical phenotype of Staphylococcus aureus (SA) called S aureus small colony variant (SA-SCV) has been identified, which is induced as a result of a combination of environmental stressors, including polymicrobial interactions. The SA-SCVs exhibit altered phenotypes as a result of metabolic dormancy caused by electron transport deficiency, leading to increased biofilm production and alterations to antimicrobial susceptibility. The SA-SCVs typically exhibit altered colony morphology and biochemical reactions compared with wild-type SA, making them difficult to detect via routine diagnostics. The SA-SCVs have been found to contribute to chronic or recurrent infections, including skin and soft-tissue infections, foreign-body associated infection, cystic fibrosis, and sepsis. There is evidence that SA-SCVs contribute to patient morbidity and mortality as a result of diagnostic difficulties and limited treatment options. New detection methods may need to be developed that can be incorporated into routine diagnostics, which would allow for better assessment of specimens and introduce new considerations for treatment.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Clinical Relevance , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Anti-Bacterial Agents/pharmacology
7.
Microbiol Resour Announc ; 11(6): e0040222, 2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35575560

ABSTRACT

The USA300 and USA600 clonal lineages are the cause of many serious Staphylococcus aureus infections. Here, we report the complete genomes of two methicillin-sensitive S. aureus strains isolated from the healthy skin of adults in Colorado, which are most phylogenetically similar to the USA300 and USA600 lineages.

8.
Future Microbiol ; 15: 319-332, 2020 03.
Article in English | MEDLINE | ID: mdl-32101035

ABSTRACT

Aim: Fluorescence imaging can visualize polymicrobial populations in chronic and acute wounds based on porphyrin fluorescence. We investigated the fluorescent properties of specific wound pathogens and the fluorescence detected from bacteria in biofilm. Methods: Utilizing Remel Porphyrin Test Agar, 32 bacterial and four yeast species were examined for red fluorescence under 405 nm violet light illumination. Polymicrobial biofilms, supplemented with δ-aminolevulinic acid, were investigated similarly. Results: A total of 28/32 bacteria, 1/4 yeast species and polymicrobial biofilms produced red fluorescence, in agreement with their known porphyrin production abilities. Conclusion: These results identify common wound pathogens capable of producing porphyrin-specific fluorescence and support clinical observations using fluorescence imaging to detect pathogenic bacteria in chronic wounds.


Subject(s)
Bacteria/isolation & purification , Optical Imaging/methods , Porphyrins/metabolism , Wounds and Injuries/microbiology , Bacteria/chemistry , Bacteria/metabolism , Biofilms , Fluorescence , Humans , Porphyrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...