Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Med ; 4(11): 761-777.e8, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37863058

ABSTRACT

BACKGROUND: Shiga toxin (Stx)-producing Escherichia coli hemolytic uremic syndrome (STEC-HUS) is the leading cause of acute kidney injury in children, with an associated mortality of up to 5%. The mechanisms underlying STEC-HUS and why the glomerular microvasculature is so susceptible to injury following systemic Stx infection are unclear. METHODS: Transgenic mice were engineered to express the Stx receptor (Gb3) exclusively in their kidney podocytes (Pod-Gb3) and challenged with systemic Stx. Human glomerular cell models and kidney biopsies from patients with STEC-HUS were also studied. FINDINGS: Stx-challenged Pod-Gb3 mice developed STEC-HUS. This was mediated by a reduction in podocyte vascular endothelial growth factor A (VEGF-A), which led to loss of glomerular endothelial cell (GEnC) glycocalyx, a reduction in GEnC inhibitory complement factor H binding, and local activation of the complement pathway. Early therapeutic inhibition of the terminal complement pathway with a C5 inhibitor rescued this podocyte-driven, Stx-induced HUS phenotype. CONCLUSIONS: This study potentially explains why systemic Stx exposure targets the glomerulus and supports the early use of terminal complement pathway inhibition in this devastating disease. FUNDING: This work was supported by the UK Medical Research Council (MRC) (grant nos. G0901987 and MR/K010492/1) and Kidney Research UK (grant nos. TF_007_20151127, RP42/2012, and SP/FSGS1/2013). The Mary Lyon Center is part of the MRC Harwell Institute and is funded by the MRC (A410).


Subject(s)
Escherichia coli Infections , Hemolytic-Uremic Syndrome , Kidney Diseases , Podocytes , Shiga-Toxigenic Escherichia coli , Child , Humans , Mice , Animals , Podocytes/metabolism , Podocytes/pathology , Shiga Toxin/genetics , Shiga Toxin/metabolism , Shiga Toxin/therapeutic use , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/therapeutic use , Escherichia coli Infections/complications , Escherichia coli Infections/drug therapy , Escherichia coli Infections/metabolism , Hemolytic-Uremic Syndrome/drug therapy , Hemolytic-Uremic Syndrome/metabolism , Hemolytic-Uremic Syndrome/pathology , Shiga-Toxigenic Escherichia coli/metabolism , Complement Activation , Kidney Diseases/pathology
2.
Front Immunol ; 11: 1833, 2020.
Article in English | MEDLINE | ID: mdl-32922395

ABSTRACT

Podocytes are an important part of the glomerular filtration barrier and the key player in the development of proteinuria, which is an early feature of complement mediated renal diseases. Complement factors are mainly liver-born and present in circulation. Nevertheless, there is a growing body of evidence for additional sites of complement protein synthesis, including various cell types in the kidney. We hypothesized that podocytes are able to produce complement components and contribute to the local balance of complement activation and regulation. To investigate the relevant balance between inhibiting and activating sides, our studies focused on complement factor H (CFH), an important complement regulator, and on C3, the early key component for complement activation. We characterized human cultured podocytes for the expression and secretion of activating and regulating complement factors, and analyzed the secretion pathway and functional activity. We studied glomerular CFH and C3 expression in puromycin aminonucleoside (PAN) -treated rats, a model for proteinuria, and the physiological mRNA-expression of both factors in murine kidneys. We found, that C3 and CFH were expressed in cultured podocytes and expression levels differed from those in cultivated glomerular endothelial cells. The process of secretion in podocytes was stimulated with interferon gamma and located in the Golgi apparatus. Cultured podocytes could initiate the complement cascade by the splitting of C3, which can be shown by the generation of C3a, a functional C3 split product. C3 contributed to external complement activation. Podocyte-secreted CFH, in conjunction with factor I, was able to split C3b. Podocytes derived from a patient with a CFH mutation displayed impaired cell surface complement regulation. CFH and C3 were synthesized in podocytes of healthy C57Bl/6-mice and were upregulated in podocytes of PAN treated rats. These data show that podocytes produce functionally active complement components, and could therefore influence the local glomerular complement activation and regulation. This modulating effect should therefore be considered in all diseases where glomerular complement activation occurs. Furthermore, our data indicate a potential novel role of podocytes in the innate immune system.


Subject(s)
Complement Activation/immunology , Complement C3/immunology , Complement Factor H/immunology , Podocytes/immunology , Animals , Complement C3/metabolism , Complement Factor H/metabolism , Humans , Male , Podocytes/metabolism , Rats , Rats, Sprague-Dawley
3.
J Clin Invest ; 127(1): 199-214, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27918307

ABSTRACT

Outer retinal and renal glomerular functions rely on specialized vasculature maintained by VEGF that is produced by neighboring epithelial cells, the retinal pigment epithelium (RPE) and podocytes, respectively. Dysregulation of RPE- and podocyte-derived VEGF is associated with neovascularization in wet age-related macular degeneration (ARMD), choriocapillaris degeneration, and glomerular thrombotic microangiopathy (TMA). Since complement activation and genetic variants in inhibitory complement factor H (CFH) are also features of both ARMD and TMA, we hypothesized that VEGF and CFH interact. Here, we demonstrated that VEGF inhibition decreases local CFH and other complement regulators in the eye and kidney through reduced VEGFR2/PKC-α/CREB signaling. Patient podocytes and RPE cells carrying disease-associated CFH genetic variants had more alternative complement pathway deposits than controls. These deposits were increased by VEGF antagonism, a common wet ARMD treatment, suggesting that VEGF inhibition could reduce cellular complement regulatory capacity. VEGF antagonism also increased markers of endothelial cell activation, which was partially reduced by genetic complement inhibition. Together, these results suggest that VEGF protects the retinal and glomerular microvasculature, not only through VEGFR2-mediated vasculotrophism, but also through modulation of local complement proteins that could protect against complement-mediated damage. Though further study is warranted, these findings could be relevant for patients receiving VEGF antagonists.


Subject(s)
Complement Factor H/metabolism , Eye Proteins/metabolism , Podocytes/metabolism , Retinal Pigment Epithelium/metabolism , Vascular Endothelial Growth Factor A/metabolism , Aged , Animals , Complement Factor H/genetics , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Eye Proteins/antagonists & inhibitors , Eye Proteins/genetics , Female , Humans , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kidney Diseases/pathology , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Male , Mice , Mice, Knockout , Podocytes/pathology , Protein Kinase C-alpha/genetics , Protein Kinase C-alpha/metabolism , Retinal Pigment Epithelium/pathology , Thrombotic Microangiopathies/genetics , Thrombotic Microangiopathies/metabolism , Thrombotic Microangiopathies/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
4.
Transfus Apher Sci ; 54(2): 203-11, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27156109

ABSTRACT

OBJECTIVES: To review the role of complement in glomerular pathologies focusing on thrombotic microangiopathies (TMA) caused by Shiga toxin (Stx) and organ transplantation associated hemolytic uremic syndrome (HUS) as well as C3 glomerulopathy (C3G). METHODS: Examination of literature discussing TMA associated with Stx HUS, transplantation related HUS and C3G. RESULTS: There is an emerging role for complement biology in the renal glomerulus where its inappropriate over-activation is integral to several diseases. Stx HUS patients show evidence of complement activation and the toxin itself can activate complement and inhibit its normal regulation. However, therapeutic complement blockade has not yet proven effective in all circumstances. This may be partly related to late use and a clinical trial could be warranted. Organ transplantation associated HUS has carried a poor prognosis. While case reports supporting the use of complement inhibition exist, there has not been a formal trial. Complement activation in C3G is established but again treatment with complement inhibition has failed to be uniformly beneficial. Here, too, a clinical trial may help determine which subgroup of patients should be treated with these agents. CONCLUSION: Complement plays an important role in the glomerulus but more work is needed to fully understand how it contributes to normal function and pathology. This will help direct appropriate therapy in these diseases.


Subject(s)
Complement C3/metabolism , Glomerulonephritis/blood , Hemolytic-Uremic Syndrome/blood , Kidney Glomerulus/metabolism , Kidney Transplantation/adverse effects , Shiga Toxin/toxicity , Thrombotic Microangiopathies/blood , Glomerulonephritis/etiology , Hemolytic-Uremic Syndrome/etiology , Humans , Thrombotic Microangiopathies/etiology
5.
Nephron ; 129(2): 128-36, 2015.
Article in English | MEDLINE | ID: mdl-25720381

ABSTRACT

BACKGROUND: Understanding podocyte biology is key to deciphering the pathogenesis of numerous glomerular diseases. However, cultivation of primary podocytes results in dedifferentiation with loss of specialised architecture. Human conditionally immortalised podocytes partly overcome this problem, utilising a temperature-sensitive transgene. Conditionally immortalised murine podocytes exist, but are derived from the Immortomouse. METHODS: Using retroviral temperature-sensitive SV40 transfection, we created a conditionally immortalised podocyte cell line from wild-type mice. RESULTS: These cells develop characteristic mature podocyte morphology and robustly express slit diaphragm proteins. Functionally, these cells demonstrate comparable responses in motility and glucose uptake to human conditionally immortalised podocytes. CONCLUSION: Podocyte-specific transgenic mice are extensively used to study glomerular disease and this technique could be used to make podocyte cell lines from any mouse, allowing study at the cellular level. This will help characterise these disease models and add to the laboratory resources used to study podocytopathies and glomerular disease.


Subject(s)
Podocytes/cytology , Animals , Cell Line , Cell Movement , Culture Techniques , Genetic Vectors , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Primary Cell Culture , Proteins/metabolism , Simian virus 40/genetics , Transfection
6.
J Am Soc Nephrol ; 25(11): 2459-70, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24904088

ABSTRACT

Podocytes are terminally differentiated cells with an elaborate cytoskeleton and are critical components of the glomerular barrier. We identified a bHLH transcription factor, Tcf21, that is highly expressed in developing and mature podocytes. Because conventional Tcf21 knockout mice die in the perinatal period with major cardiopulmonary defects, we generated a conditional Tcf21 knockout mouse to explore the role of this transcription factor in podocytes in vivo. Tcf21 was deleted from podocytes and podocyte progenitors using podocin-cre (podTcf21) and wnt4-cre (wnt4creTcf21) driver strains, respectively. Loss of Tcf21 from capillary-loop stage podocytes (podTcf21) results in simplified glomeruli with a decreased number of endothelial and mesangial cells. By 5 weeks of age, 40% of podTcf21 mice develop massive proteinuria and lesions similar to FSGS. Notably, the remaining 60% of mice do not develop proteinuria even when aged to 8 months. By contrast, earlier deletion of Tcf21 from podocyte precursors (wnt4creTcf21) results in a profound developmental arrest of podocyte differentiation and renal failure in 100% of mice during the perinatal period. Taken together, our results demonstrate a critical role for Tcf21 in the differentiation and maintenance of podocytes. Identification of direct targets of this transcription factor may provide new therapeutic avenues for proteinuric renal disease, including FSGS.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Diabetes Mellitus, Experimental/physiopathology , Glomerulosclerosis, Focal Segmental/physiopathology , Podocytes/physiology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation/physiology , Cell Line , Cellular Senescence/physiology , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/pathology , Kidney Glomerulus/embryology , Kidney Glomerulus/pathology , Kidney Glomerulus/physiopathology , Lac Operon , Mice, Knockout , Mice, Transgenic , Oligonucleotide Array Sequence Analysis , Phenotype , Podocytes/pathology , Proteinuria/genetics , Proteinuria/pathology , Proteinuria/physiopathology
7.
Pediatr Nephrol ; 29(10): 1895-902, 2014 Oct.
Article in English | MEDLINE | ID: mdl-23843163

ABSTRACT

Shiga toxin-associated haemolytic uraemic syndrome (Stx HUS) is the leading cause of paediatric acute kidney injury. This toxin-mediated disease carries a significant morbidity and mortality but has no direct treatments. Rare familial atypical HUS (aHUS) is now understood to result from over-activation of the alternative complement pathway causing glomerular endothelial damage. By understanding the pathogenic mechanisms of this disease, the monoclonal antibody eculizumab, which blocks the final common pathway of complement, is now being used to treat aHUS. For this reason, clinicians and scientists are studying the role of the alternative complement pathway in Stx HUS with the aim of targeting treatment in a similar way. There is some evidence suggesting that complement plays a role in the pathogenesis of Stx HUS, but other mechanisms may also be important. Clinically, modulating the complement system using plasma exchange provides no proven benefit in Stx HUS, and the use of eculizumab has provided conflicting results. Understanding the local effect of Stx on the glomerulus, in particular regulation of the complement and coagulation systems, may lead to advances in defining the precise pathogenesis of this disease. Then, targeted treatment strategies could be devised and clinical trials undertaken.


Subject(s)
Complement System Proteins/physiology , Hemolytic-Uremic Syndrome/physiopathology , Shiga Toxin/adverse effects , Atypical Hemolytic Uremic Syndrome/physiopathology , Atypical Hemolytic Uremic Syndrome/therapy , Child , Hemolytic-Uremic Syndrome/therapy , Humans
8.
Drug Des Devel Ther ; 6: 195-208, 2012.
Article in English | MEDLINE | ID: mdl-22888220

ABSTRACT

Hemolytic uremic syndrome is the leading cause of acute kidney injury in childhood. Ninety percent of cases are secondary to gastrointestinal infection with shigatoxin-producing bacteria. In this review, we discuss the molecular mechanisms of shigatoxin leading to hemolytic uremic syndrome and the emerging role of the complement system and vascular endothelial growth factor in its pathogenesis. We also review the evidence for treatment options to date, in particular antibiotics, plasma exchange, and immunoadsorption, and link this to the molecular pathology. Finally, we discuss future avenues of treatment, including shigatoxin-binding agents and complement inhibitors, such as eculizumab.


Subject(s)
Gastrointestinal Diseases/complications , Hemolytic-Uremic Syndrome/therapy , Shiga Toxins , Acute Kidney Injury/etiology , Animals , Anti-Bacterial Agents/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Bacterial Infections/complications , Bacterial Infections/microbiology , Child , Gastrointestinal Diseases/microbiology , Hemolytic-Uremic Syndrome/complications , Hemolytic-Uremic Syndrome/etiology , Humans , Immunosorbent Techniques , Plasma Exchange/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...