Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-39005275

ABSTRACT

Nanotechnology plays a crucial role in vaccine development and provides the opportunity to design functional nanoparticles (Np) of different compositions, sizes, charges and surface properties for biomedical applications. The present study aims to evaluate a complex coacervate-like Np composed of poly(allylamine hydrochloride) (PAH) and tripolyphosphate (Tpp) as a safe vehicle and adjuvant for systemic vaccines. We investigated the activation of different antigen-presenting cells (APCs) with Np-PAH and its adjuvanticity in Balbc/c and different KO mice that were intraperitoneally immunized with Np-OVA. We found that Np-PAH increased the expression of CD86 and MHCII and promoted the production and secretion of interleukin-1ß (IL-1ß) and IL-18 through the inflammasome NLRP3 when macrophages and dendritic cells were co-incubated with LPS and Np-PAH. We evidenced an unconventional IL-1ß release through the autophagosome pathway. The inhibition of autophagy with 3-methyladenine reduced the LPS/Np-PAH-induced IL-1ß secretion. Additionally, our findings showed that the systemic administration of mice with Np-OVA triggered a significant induction of serum OVA-specific IgG and IgG2a, an increased secretion of IFN-γ by spleen cells, and high frequencies of LT CD4 + IFN-γ + and LT CD8 + IFN-γ + . In conclusion, our findings show that PAH-based Np promoted the inflammasome activation of innate cells with Th1-dependent adjuvant properties, making them valuable for formulating of novel preventive or therapeutic vaccines for infectious and non-infectious diseases.

2.
Am J Pathol ; 194(5): 810-827, 2024 May.
Article in English | MEDLINE | ID: mdl-38325553

ABSTRACT

Corneal nerve impairment contributes significantly to dry eye disease (DED) symptoms and is thought to be secondary to corneal epithelial damage. Transient receptor potential vanilloid-1 (TRPV1) channels abound in corneal nerve fibers and respond to inflammation-derived ligands, which increase in DED. TRPV1 overactivation promotes axonal degeneration in vitro, but whether it participates in DED-associated corneal nerve dysfunction is unknown. To explore this, DED was surgically induced in wild-type and TRPV1-knockout mice, which developed comparable corneal epithelial damage and reduced tear secretion. However, corneal mechanosensitivity decreased progressively only in wild-type DED mice. Sensitivity to capsaicin (TRPV1 agonist) increased in wild-type DED mice, and consistently, only this strain displayed DED-induced pain signs. Wild-type DED mice exhibited nerve degeneration throughout the corneal epithelium, whereas TRPV1-knockout DED mice only developed a reduction in the most superficial nerve endings that failed to propagate to the deeper subbasal corneal nerves. Pharmacologic TRPV1 blockade reproduced these findings in wild-type DED mice, whereas CD4+ T cells from both strains were equally pathogenic when transferred, ruling out a T-cell-mediated effect of TRPV1 deficiency. These data show that ocular desiccation triggers superficial corneal nerve damage in DED, but proximal propagation of axonal degeneration requires TRPV1 expression. Local inflammation sensitized TRPV1 channels, which increased ocular pain. Thus, ocular TRPV1 overactivation drives DED-associated corneal nerve impairment.


Subject(s)
Corneal Injuries , Dry Eye Syndromes , Transient Receptor Potential Channels , Animals , Mice , Cornea/pathology , Corneal Injuries/pathology , Dry Eye Syndromes/metabolism , Inflammation/pathology , Pain , Transient Receptor Potential Channels/pharmacology
3.
Front Immunol ; 13: 832306, 2022.
Article in English | MEDLINE | ID: mdl-36091026

ABSTRACT

Neutrophils play major roles against bacteria and fungi infections not only due to their microbicide properties but also because they release mediators like Interleukin-1 beta (IL-1ß) that contribute to orchestrate the inflammatory response. This cytokine is a leaderless protein synthesized in the cytoplasm as a precursor (pro-IL-1ß) that is proteolytically processed to its active isoform and released from human neutrophils by secretory autophagy. In most myeloid cells, pro-IL-1ß is processed by caspase-1 upon inflammasome activation. Here we employed neutrophils from both healthy donors and patients with a gain-of-function (GOF) NLRP3-mutation to dissect IL-1ß processing in these cells. We found that although caspase-1 is required for IL-1ß secretion, it undergoes rapid inactivation, and instead, neutrophil serine proteases play a key role in pro-IL-1ß processing. Our findings bring to light distinctive features of the regulation of caspase-1 activity in human neutrophils and reveal new molecular mechanisms that control human neutrophil IL-1ß secretion.


Subject(s)
Autophagy , Caspase 1 , Interleukin-1beta , Neutrophils , Serine Proteases , Autophagy/genetics , Autophagy/immunology , Caspase 1/genetics , Caspase 1/metabolism , Humans , Inflammasomes/genetics , Inflammasomes/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Neutrophils/enzymology , Neutrophils/immunology , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Serine Proteases/genetics , Serine Proteases/immunology
4.
J Neurooncol ; 153(3): 403-415, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34125375

ABSTRACT

PURPOSE: γδ T lymphocytes are non-conventional T cells that participate in protective immunity and tumor surveillance. In healthy humans, the main subset of circulating γδ T cells express the TCRVγ9Vδ2. This subset responds to non-peptide prenyl-pyrophosphate antigens such as (E)-4-hydroxy-3-methyl-but-enyl pyrophosphate (HMBPP). This unique feature of Vγ9Vδ2 T cells makes them a candidate for anti-tumor immunotherapy. In this study, we investigated the response of HMBPP-activated Vγ9Vδ2 T lymphocytes to glioblastoma multiforme (GBM) cells. METHODS: Human purified γδ T cells were stimulated with HMBPP (1 µM) and incubated with GBM cells (U251, U373 and primary GBM cultures) or their conditioned medium. After overnight incubation, expression of CD69 and perforin was evaluated by flow cytometry and cytokines production by ELISA. As well, we performed a meta-analysis of transcriptomic data obtained from The Cancer Genome Atlas. RESULTS: HMBPP-stimulated γδ T cells cultured with GBM or its conditioned medium increased CD69, intracellular perforin, IFN-γ, and TNF-α production. A meta-analysis of transcriptomic data showed that GBM patients display better overall survival when mRNA TRGV9, the Vγ9 chain-encoding gene, was expressed in high levels. Moreover, its expression was higher in low-grade GBM compared to GBM. Interestingly, there was an association between γδ T cell infiltrates and TNF-α expression in the tumor microenvironment. CONCLUSION: GBM cells enhanced Th1-like profile differentiation in phosphoantigen-stimulated γδ T cells. Our results reinforce data that have demonstrated the implication of Vγ9Vδ2 T cells in the control of GBM, and this knowledge is fundamental to the development of immunotherapeutic protocols to treat GBM based on γδ T cells.


Subject(s)
Glioblastoma , Culture Media, Conditioned , Diphosphates , Humans , Lymphocyte Activation , Perforin , Receptors, Antigen, T-Cell, gamma-delta , Th1 Cells , Tumor Microenvironment , Tumor Necrosis Factor-alpha
5.
Front Immunol ; 11: 524180, 2020.
Article in English | MEDLINE | ID: mdl-33692774

ABSTRACT

The type 1 TNF-α receptor (TNFR1) has a central role in initiating both pro-inflammatory and pro-apoptotic signaling cascades in neutrophils. Considering that TNFR1 signals Staphylococcus aureus protein A (SpA), the aim of this study was to explore the interaction of this bacterial surface protein with neutrophils and keratinocytes to underscore the signaling pathways that may determine the fate of these innate immune cells in the infected tissue during staphylococcal skin infections. Using human neutrophils cultured in vitro and isogenic staphylococcal strains expressing or not protein A, we demonstrated that SpA is a potent inducer of IL-8 in neutrophils and that the induction of this chemokine is dependent on the SpA-TNFR1 interaction and p38 activation. In addition to IL-8, protein A induced the expression of TNF-α and MIP-1α highlighting the importance of SpA in the amplification of the inflammatory response. Protein A contributed to reduce neutrophil mortality prolonging their lifespan upon the encounter with S. aureus. Signaling initiated by SpA modulated the type of neutrophil cell death in vitro and during skin and soft tissue infections (SSTI) in vivo triggering the apoptotic pathway instead of necrosis. Moreover, SpA induced pro-inflammatory cytokines in keratinocytes, modulating their survival in vitro and preventing the exacerbated necrosis and ulceration of the epithelium during SSTI in vivo. Taken together, these results highlight the importance of the inflammatory signaling induced by protein A in neutrophils and skin epithelial cells. The ability of protein A to modulate the neutrophil/epithelial cell death program in the skin is of clinical relevance considering that lysis of neutrophils and epithelial cells will promote an intense inflammatory response and contribute to tissue damage, a non-desirable feature of complicated SSTI.


Subject(s)
Keratinocytes/immunology , MAP Kinase Signaling System/immunology , Neutrophils/immunology , Staphylococcal Protein A/immunology , Staphylococcus aureus/immunology , Cytokines/immunology , Humans , Keratinocytes/microbiology , Neutrophils/microbiology , Receptors, Tumor Necrosis Factor, Type I/immunology , p38 Mitogen-Activated Protein Kinases/immunology
6.
Front Immunol ; 10: 2374, 2019.
Article in English | MEDLINE | ID: mdl-31681277

ABSTRACT

Fever is a hallmark of infections and inflammatory diseases, represented by an increase of 1-4°C in core body temperature. Fever-range hyperthermia (FRH) has been shown to increase neutrophil recruitment to local sites of infection. Here, we evaluated the impact of a short period (1 h) of FRH (STFRH) on pro-inflammatory and bactericidal human neutrophil functions. STFRH did not affect neutrophil spontaneous apoptosis but reverted the lipopolysaccharide (LPS)-induced anti-apoptotic effect compared with that under normothermic conditions. Furthermore, STFRH accelerated phorbol myristate acetate (PMA)-induced NETosis evaluated either by the nuclear DNA decondensation at 2 h post-stimulation or by the increase in extracellular DNA that colocalized with myeloperoxidase (MPO) at 4 h post-stimulation. Increased NETosis upon STFRH was associated with an increase in reactive oxygen species (ROS) production but not in autophagy levels. STFRH also increased NETosis in response to Pseudomonas aeruginosa challenge but moderately reduced its phagocytosis. However, these STFRH-induced effects did not influence the ability of neutrophils to kill bacteria after 4 h of co-culture. STFRH also significantly reduced neutrophil capacity to release the pro-inflammatory cytokines chemokine (C-X-C motif) ligand 8/interleukin 8 (CXCL8/IL-8) and IL-1ß in response to LPS and P. aeruginosa challenge. Altogether, these results indicate that a short and mild hyperthermal period is enough to modulate neutrophil responses to bacterial encounter. They also suggest that fever spikes during bacterial infections might lead neutrophils to trigger an emergency response promoting neutrophil extracellular trap (NET) formation to ensnare bacteria in order to wall off the infection and to reduce their release of pro-inflammatory cytokines in order to limit the inflammatory response.


Subject(s)
Extracellular Traps/immunology , Fever/immunology , Interleukin-1beta/immunology , Interleukin-8/immunology , Neutrophils/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Extracellular Traps/microbiology , Female , Fever/microbiology , Fever/pathology , Humans , Male , Neutrophils/microbiology , Neutrophils/pathology , Pseudomonas Infections/pathology
7.
Mucosal Immunol ; 11(5): 1441-1453, 2018 09.
Article in English | MEDLINE | ID: mdl-29867077

ABSTRACT

Immunological interdependence between the two eyes has been reported for the cornea and the retina but not for the ocular mucosal surface. Intriguingly, patients frequently report ocular surface-related symptoms in the other eye after unilateral ocular surgery. Here we show how unilateral eye injuries in mice affect the mucosal immune response of the opposite ocular surface. We report that, despite the lack of lymphatic cross-drainage, a neurogenic inflammatory reflex in the contralateral conjunctiva is sufficient to increase, first, epithelial nuclear factor kappa B signaling, then, dendritic cell maturation, and finally, expansion of effector, instead of regulatory, T cells in the draining lymph node, leading to disrupted ocular mucosal tolerance. We also show that damage to ocular surface nerves is required. Using pharmacological inhibitors and agonists, we identified transient receptor potential vanilloid 1 (TRPV1) channel as the receptor sensing tissue damage in the injured eye and substance P released in the opposite ocular surface as the effector of the sympathetic response. Finally, blocking either step prevented subsequent ocular allergic reactions in the opposite eye in a unilateral corneal alkali burn model. This study demonstrates that both ocular surfaces are immunologically linked and suggests potential therapeutic targets for intervention.


Subject(s)
Eye/immunology , Inflammation/immunology , Mucous Membrane/immunology , Substance P/immunology , TRPV Cation Channels/immunology , Animals , Cell Line, Tumor , Dendritic Cells/immunology , Hypersensitivity/immunology , Lymph Nodes/immunology , Melanoma , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NF-kappa B/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/immunology
8.
Front Immunol ; 9: 269, 2018.
Article in English | MEDLINE | ID: mdl-29515581

ABSTRACT

Interleukin-1ß (IL-1ß), a major pro-inflammatory cytokine, is a leaderless cytosolic protein whose secretion does not follow the classical endoplasmic reticulum-to-Golgi pathway, and for which a canonical mechanism of secretion remains to be established. Neutrophils are essential players against bacterial and fungi infections. These cells are rapidly and massively recruited from the circulation into infected tissues and, beyond of displaying an impressive arsenal of toxic weapons effective to kill pathogens, are also an important source of IL-1ß in infectious conditions. Here, we analyzed if an unconventional secretory autophagy mechanism is involved in the exportation of IL-1ß by these cells. Our findings indicated that inhibition of autophagy with 3-methyladenine and Wortmannin markedly reduced IL-1ß secretion induced by LPS + ATP, as did the disruption of the autophagic flux with Bafilomycin A1 and E64d. These compounds did not noticeable affect neutrophil viability ruling out that the effects on IL-1ß secretion were due to cell death. Furthermore, VPS34IN-1, a specific autophagy inhibitor, was still able to reduce IL-1ß secretion when added after it was synthesized. Moreover, siRNA-mediated knockdown of ATG5 markedly reduced IL-1ß secretion in neutrophil-differentiated PLB985 cells. Upon LPS + ATP stimulation, IL-1ß was incorporated to an autophagic compartment, as was revealed by its colocalization with LC3B by confocal microscopy. Overlapping of IL-1ß-LC3B in a vesicular compartment peaked before IL-1ß increased in culture supernatants. On the other hand, stimulation of autophagy by cell starvation augmented the colocalization of IL-1ß and LC3B and then promoted neutrophil IL-1ß secretion. In addition, specific ELISAs indicated that although both IL-1ß and pro-IL-1ß are released to culture supernatants upon neutrophil stimulation, autophagy only promotes IL-1ß secretion. Furthermore, the serine proteases inhibitor AEBSF reduced IL-1ß secretion. Moreover, IL-1ß could be also found colocalizing with elastase, suggesting both some vesicles containing IL-1ß intersect azurophil granules content and that serine proteases also regulate IL-1ß secretion. Altogether, our findings indicate that an unconventional autophagy-mediated secretory pathway mediates IL-1ß secretion in human neutrophils.


Subject(s)
Inflammation Mediators/metabolism , Interleukin-1beta/metabolism , Neutrophils/immunology , Adenine/analogs & derivatives , Adenine/pharmacology , Adenosine Triphosphate/immunology , Autophagy/drug effects , Autophagy-Related Protein 5/genetics , Autophagy-Related Protein 5/metabolism , Cell Line , Humans , Lipopolysaccharides/immunology , Macrolides/pharmacology , Microtubule-Associated Proteins/metabolism , Protein Transport , RNA, Small Interfering/genetics , Secretory Pathway , Serine Proteases/metabolism , Wortmannin/pharmacology
9.
J Innate Immun ; 9(4): 387-402, 2017.
Article in English | MEDLINE | ID: mdl-28467984

ABSTRACT

Tissue injury leads to the release of uric acid (UA). At high local concentrations, UA can form monosodium urate crystals (MSU). MSU and UA stimulate neutrophils to release extracellular traps (NET). Here, we investigated whether these NET could be involved in the development of inflammation by stimulating cytokine release by airway epithelial cells. We found that NET significantly increased the secretion of CXCL8/IL-8 and IL-6 by alveolar and bronchial epithelial cells. These effects were not observed when NETosis was inhibited by Diphenyleneiodonium, elastase inhibitor, or Cl-amidine. Similar findings were made with NET induced by cigarette smoke extract, suggesting that NET proinflammatory capacity is independent of the inducing stimulus. Furthermore, NET affected neither the viability and morphology of epithelial cells nor the barrier integrity of polarized cells. The epithelial stimulatory capacity of NET was not affected by degradation of DNA with micrococcal nuclease, treatment with heparin, or inhibition of the elastase immobilized to DNA, but it was significantly reduced by pretreatment with an anti-HMGB-1 blocking antibody. Altogether, our findings indicate that NET exert direct proinflammatory effects on airway epithelial cells that might contribute in vivo to the further recruitment of neutrophils and the perpetuation of inflammation upon lung tissue damage.


Subject(s)
Bronchi/parasitology , Extracellular Traps/metabolism , Inflammation/immunology , Interleukin-6/metabolism , Neutrophils/immunology , Pulmonary Alveoli/pathology , Respiratory Mucosa/immunology , Antibodies, Blocking/pharmacology , Cells, Cultured , Cigarette Smoking/adverse effects , Extracellular Traps/immunology , HMGB1 Protein/immunology , Humans , Interleukin-8/metabolism , Onium Compounds/pharmacology , Ornithine/analogs & derivatives , Ornithine/pharmacology , Proteinase Inhibitory Proteins, Secretory/pharmacology , Respiratory Mucosa/pathology , Uric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...