Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(10): e0240322, 2020.
Article in English | MEDLINE | ID: mdl-33048972

ABSTRACT

Globally, economies and marine ecosystems are increasingly dependent on sustainable fisheries management (SFM) to balance social, economic, and conservation needs. The overarching objectives of SFM are to maximize both conservation and socio-economic benefits, while minimizing short-term socio-economic costs. A number of tools have been developed to achieve SFM objectives, ranging from fishery specific to ecosystem-based strategies. Closures are a common SFM tool used to balance the trade-off between socio-economic and conservation considerations; they vary in scope from small-scale temporary closures to large-scale permanent networks. Unfortunately, closures are frequently implemented without a plan for monitoring or assessing whether SFM objectives are met. In situations in which a monitoring plan is not in place we propose that commonly available fishery data can often be used to evaluate whether management tools are effective in meeting SFM objectives. Here, we present a case study of closures on Georges Bank that shows how fishery data can be analyzed to perform such an assessment. Since 2006, on the Canadian side of Georges Bank, seasonal scallop fishery closures have been implemented with the aim of reducing by-catch of Atlantic cod (Gadus morhua) and yellowtail flounder (Pleuronectes ferruginea) during spawning. In lieu of data from a dedicated monitoring program, we analyzed data from Vessel Monitoring Systems (VMS), fishery logbooks, and a scallop survey to assess the impact of these closures on the scallop fishery, and use observer data (i.e. by-catch) to assess the effectiveness of these closures in meeting their conservation objective. While compliance for these time-area closures was high, the closures did not significantly displace fishing activity and overall there was limited evidence of an impact on the scallop fishery. Further, the discard rates for both cod and yellowtail were above average when their respective closures were active. These results suggest that improvements to the closures design and/or other measures may be required to achieve the desired SFM objectives.


Subject(s)
Conservation of Natural Resources/methods , Fisheries/economics , Flounder/growth & development , Gadus morhua/growth & development , Animals , Canada , Conservation of Natural Resources/economics , Models, Theoretical , Socioeconomic Factors , Time Factors
2.
Conserv Biol ; 28(3): 790-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24512300

ABSTRACT

Recovery of depleted populations is fundamentally important for conservation biology and sustainable resource harvesting. At low abundance, population growth rate, a primary determinant of population recovery, is generally assumed to be relatively fast because competition is low (i.e., negative density dependence). But population growth can be limited in small populations by an Allee effect. This is particularly relevant for collapsed populations or species that have not recovered despite large reductions in, or elimination of, threats. We investigated how an Allee effect can influence the dynamics of recovery. We used Atlantic cod (Gadus morhua) as the study organism and an empirically quantified Allee effect for the species to parameterize our simulations. We simulated recovery through an individual-based mechanistic simulation model and then compared recovery among scenarios incorporating an Allee effect, negative density dependence, and an intermediate scenario. Although an Allee effect significantly slowed recovery, such that population increase could be negligible even after 100 years or more, it also made the time required for biomass rebuilding much less predictable. Our finding that an Allee effect greatly increased the uncertainty in recovery time frames provides an empirically based explanation for why the removal of threat does not always result in the recovery of depleted populations or species.


Subject(s)
Conservation of Natural Resources , Gadus morhua/physiology , Genetic Fitness , Models, Genetic , Animals , Fisheries , Population Density , Population Dynamics , Uncertainty
3.
J Environ Manage ; 92(10): 2714-22, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21745709

ABSTRACT

Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this "residual light pollution", cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.


Subject(s)
Environmental Pollution , Health , Lighting/adverse effects , Melatonin/antagonists & inhibitors , Vision, Ocular/physiology , Animals , Animals, Wild , Conservation of Natural Resources , Environment , Eye , Humans , Lighting/standards , Sodium , Visual Perception
4.
Sensors (Basel) ; 10(4): 3961-88, 2010.
Article in English | MEDLINE | ID: mdl-22319336

ABSTRACT

We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and "meltopic") plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more spectral bands with minimal spectral overlap spanning the 0.4 to 1.0 um region.

SELECTION OF CITATIONS
SEARCH DETAIL
...