Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Parkinsons Dis ; 12(4): 1241-1250, 2022.
Article in English | MEDLINE | ID: mdl-35367969

ABSTRACT

BACKGROUND: Background: Parkinson's disease (PD) patients who develop freezing of gait (FOG) have reduced mobility and independence. While some patients experience improvement in their FOG symptoms with dopaminergic therapies, a subset of patients have little to no response. To date, it is unknown what changes in brain structure underlie dopa-response and whether this can be measured using neuroimaging approaches. OBJECTIVE: We tested the hypothesis that structural integrity of brain regions (subthalamic nucleus and globus pallidus internus, GPi) which link basal ganglia to the mesencephalic locomotor region (MLR), a region involved in automatic gait, would be associated with FOG response to dopaminergic therapy. METHODS: In this observational study, thirty-six participants with PD and definite FOG were recruited to undergo diffusion kurtosis imaging (DKI) and multiple assessments of dopa responsiveness (UPDRS scores, gait times ON versus OFF medication). RESULTS: The right GPi in participants with dopa-unresponsive FOG showed reduced fractional anisotropy, mean kurtosis (MK), and increased radial diffusivity relative to those with dopa-responsive FOG. Furthermore, using probabilistic tractography, we observed reduced MK and increased mean diffusivity along the right GPi-MLR tract in dopa-unresponsive FOG. MK in the right GPi was associated with a subjective dopa-response for FOG (r = -0.360, df = 30, p = 0.043) but not overall motor dopa-response. CONCLUSION: These results support structural integrity of the GPi as a correlate to dopa-response in FOG. Additionally, this study suggests DKI metrics may be a sensitive biomarker for clinical studies targeting dopaminergic circuitry and improvements in FOG behavior.


Subject(s)
Gait Disorders, Neurologic , Parkinson Disease , Dihydroxyphenylalanine , Dopamine , Gait , Gait Disorders, Neurologic/diagnostic imaging , Gait Disorders, Neurologic/drug therapy , Gait Disorders, Neurologic/etiology , Globus Pallidus/diagnostic imaging , Humans , Parkinson Disease/complications , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...