Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 230: 119587, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36638728

ABSTRACT

Aerobic biotreatment systems can treat multiple reduced inorganic contaminants in groundwater, including ammonia (NH3), arsenic (As), iron (Fe), and manganese (Mn). While individual systems treating multiple contaminants simultaneously have been characterized and several systems treating one contaminant have been compared, a comparison of systems treating co-occurring contaminants is lacking. This study assessed the treatment performance and microbial communities within 7 pilot- and full-scale groundwater biotreatment systems in the United States that treated waters with pH 5.6-7.8, 0.1-2.0 mg/L dissolved oxygen, 75-376 mg CaCO3/L alkalinity, < 0.03-3.79 mg NH3-N/L, < 4-31 µg As/L, < 0.01-9.37 mg Fe/L, 2-1220 µg Mn/L, and 0.1-5.6 mg/L total organic carbon (TOC). Different reactor configurations and media types were represented, allowing for a broad assessment of linkages between water quality and microbial communities via microscopy, biofilm quantification, and molecular methods. Influent NH3, TOC, and pH contributed to differences in the microbial communities. Mn oxidase gene copy numbers were slightly negatively correlated with the influent Mn concentration, but no significant relationships between gene copy number and influent concentration were observed for the other contaminants. Extracellular enzyme activities, community composition, and carbon transformation pathways suggested heterotrophic bacteria may be important in nitrifying biofilters. Aerobic groundwater biofilters are complex, and improved understanding could lead to engineering enhancements.


Subject(s)
Arsenic , Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/chemistry , Manganese/chemistry , Groundwater/chemistry , Iron/metabolism , Arsenic/chemistry , Carbon
2.
AWWA Water Sci ; 5(3): 1-14, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-38268712

ABSTRACT

Existing heterotrophic denitrification reactors rely on microorganisms to consume dissolved oxygen (DO) and create conditions suitable for denitrification, but this practice leads to excessive microbial growth and increased organic carbon doses. An innovative reactor that uses nitrogen gas sparging through a contactor to strip DO was developed and tested in the lab. It reduced influent nitrate from 15 to <1 mg/L as N with nitrite accumulation <1 mg/L as N. It maintained a consistent flow rate and developed minimal headloss, making it easier to operate than the denitrifying dual-media filter that was operated in parallel. Gravel, polyvinyl chloride pieces, and no packing media were assessed as options for the nitrogen-sparged contactor, and gravel was found to support denitrification at the highest loading rate and was resilient to nitrogen-sparging shutoffs and intermittent operation. This innovative reactor appears promising for small drinking water systems.

3.
J Water Process Eng ; 56: 1-11, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38357328

ABSTRACT

The biological treatment process consisting of an aerated contactor and filter is effective for groundwaters containing elevated ammonia and other reduced contaminants, including iron, manganese, arsenic, and methane. Depth profiles characterizing microbial activity across aerated contactors are lacking. A 1-year pilot study comparing gravel- and ceramic-packed contactors was conducted, and media depth profile samples were collected at the conclusion of the study. Media and water samples also were collected from pilot-scale aerated contactors at 4 other water systems. Water quality, media surface metals concentrations, and a suite of biofilm parameters were analyzed. Media surface metals concentrations were greatest at the influent end. ATP concentrations, extracellular polymeric substances, and extracellular enzyme activities tended to be similar across depth. Bacteria and functional genes involved in contaminant oxidation co-occurred and tended to decrease across depth, but were not correlated to the media metals concentration. Microbial community composition changed with depth, and the diversity either decreased or remained similar. The microbial activity profiles through aerated contactors differed from what is typically reported for groundwater biofilters, suggesting that the different reactor flow and dissolved oxygen profiles impacted the microbial community.

4.
Water Res ; 203: 117485, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34371232

ABSTRACT

Hard water and elevated ammonia are problems for many United States groundwater drinking water utilities, and some utilities, particularly those in the Midwest, face both challenges. Ion (cation) exchange (IX) is a common treatment technique for hardness reduction (i.e., softening) and may be used to remove ammonia as well, but these constituents may compete in IX and impact overall treatment performance. Few data have been reported on the impact on ammonia concentrations when using IX for softening in full-scale systems. This study investigated four full-scale groundwater treatment plants in Illinois that practice IX for softening (raw water hardness > 220 mg/L as CaCO3) and have elevated groundwater ammonia concentrations (> 2 mg N/L). Sampling throughout the year revealed consistent finished water hardness levels but variable ammonia concentrations. Ammonia removal varied and depended on how much water had been treated since the last regeneration. High ammonia removal (sometimes > 90%) occurred in the first half of the IX service cycle, while effluent ammonia concentrations increased compared to the influent (sometimes > 200%) towards the end of the IX cycle (total length 50,000-92,000 gallons [190-350 m3]). Ammonia removal efficiency varied among the plants, but the overall trends were similar. Because variable ammonia concentrations may make it difficult to produce a consistent total chlorine residual, they can negatively impact disinfection and water quality in the distribution system. Ammonia concentrations should be considered when designing softening systems to determine regeneration frequency, develop blending strategies, or include an alternative ammonia treatment process before IX softening to produce a more stable and consistent finished water.


Subject(s)
Drinking Water , Water Pollutants, Chemical , Water Purification , Ammonia , Ion Exchange , Water Quality , Water Softening
SELECTION OF CITATIONS
SEARCH DETAIL
...