Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 119(29): 8852-62, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-24901902

ABSTRACT

Phospholipid bilayers are frequently used as models for cell membranes. Here the influence of cholesterol on the structural dynamics in the interior of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) vesicles and DLPC planar bilayers are investigated as a function of cholesterol concentration. 2D IR vibrational echo spectroscopy was performed on the antisymmetric CO stretch of the vibrational probe molecule tungsten hexacarbonyl, which is located in the interior alkyl regions of the bilayers. The 2D IR experiments measure spectral diffusion, which is caused by the structural fluctuations of the bilayers. The 2D IR measurements show that the bilayer interior alkyl region dynamics occur on time scales ranging from a few picoseconds to many tens of picoseconds. These are the time scales of the bilayers' structural dynamics, which act as the dynamic solvent bath for chemical processes of membrane biomolecules. The results suggest that at least a significant fraction of the dynamics arise from density fluctuations. Samples are studied in which the cholesterol concentration is varied from 0% to 40% in both the vesicles (72 nm diameter) and fully hydrated planar bilayers in the form of aligned multibilayers. At all cholesterol concentrations, the structural dynamics are faster in the curved vesicle bilayers than in the planar bilayers. As the cholesterol concentration is increased, at a certain concentration there is a sudden change in the dynamics, that is, the dynamics abruptly slow down. However, this change occurs at a lower concentration in the vesicles (between 10% and 15% cholesterol) than in the planar bilayers (between 25% and 30% cholesterol). The sudden change in the dynamics, in addition to other IR observables, indicates a structural transition. However, the results show that the cholesterol concentration at which the transition occurs is influenced by the curvature of the bilayers.


Subject(s)
Cholesterol/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Solvents/chemistry , Spectrophotometry, Infrared , Surface Properties , Time Factors , Vibration
2.
Proc Natl Acad Sci U S A ; 111(3): 918-23, 2014 Jan 21.
Article in English | MEDLINE | ID: mdl-24395796

ABSTRACT

The ultrafast structural dynamics inside the bilayers of dilauroylphosphatidylcholine (DLPC) and dipalmitoylphosphatidylcholine vesicles with 70, 90, and 125 nm diameters were directly measured with 2D IR vibrational echo spectroscopy. The antisymmetric CO stretch of tungsten hexacarbonyl was used as a vibrational probe and provided information on spectral diffusion (structural dynamics) in the alkyl region of the bilayers. Although the CO stretch absorption spectra remain the same, the interior structural dynamics become faster as the size of the vesicles decrease, with the size dependence greater for dipalmitoylphosphatidylcholine than for DLPC. As DLPC vesicles become larger, the interior dynamics approach those of the planar bilayer.


Subject(s)
Lipid Bilayers/chemistry , Phospholipids/chemistry , Spectrophotometry, Infrared/methods , Light , Membranes, Artificial , Phosphatidylcholines/chemistry , Scattering, Radiation , Solvents/chemistry , Spectroscopy, Fourier Transform Infrared/methods , Temperature
3.
J Am Chem Soc ; 135(30): 11063-74, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23837718

ABSTRACT

The ultrafast dynamics in the interior of planar aligned multibilayers of 1,2-dilauroyl-sn-glycero-3-phosphocholine (dilauroylphosphatidylcholine, DLPC) are investigated using 2D IR vibrational echo spectroscopy. The nonpolar and water insoluble vibrational dynamics probe, tungsten hexacarbonyl (W(CO)6), is located in the alkane interior of the membranes. The 2D IR experiments conducted on the antisymmetric CO stretching mode measure spectral diffusion caused by the structural dynamics of the membrane from ~200 fs to ~200 ps as a function of the number of water molecules hydrating the head groups and as a function of cholesterol content for a fixed hydration level. FT-IR studies of the lipid bilayers and the model liquids, hexadecane and bis(2-ethylhexyl) succinate, indicate that as the number of hydrating water molecules increases from 2 to 16, there are structural changes in the membrane that partition some of the W(CO)6 into the ester region of DLPC. However, the 2D IR measurements, which are made solely on the W(CO)6 in the alkane regions, show that the level of hydration has no observable impact on the interior membrane dynamics. FT-IR spectra and 2D IR experiments on samples with cholesterol concentrations from 0 to 60% demonstrate that there is a change in the membrane structure and an abrupt change in dynamics at 35% cholesterol. The dynamics are independent of cholesterol content from 10 to 35%. At 35%, the dynamics become slower and remain unchanged from 35 to 60% cholesterol.


Subject(s)
Cell Membrane/chemistry , Phosphatidylcholines/chemistry , Spectroscopy, Fourier Transform Infrared , Absorption , Cholesterol/chemistry , Kinetics , Models, Molecular , Molecular Conformation , Tungsten , Water/chemistry
4.
Chemistry ; 19(22): 7173-80, 2013 May 27.
Article in English | MEDLINE | ID: mdl-23576271

ABSTRACT

The interaction of a series of chiral cationic [4]helicene derivatives, which differ by their substituents, with double-stranded DNA has been investigated by using a combination of spectroscopic techniques, including time-resolved fluorescence, fluorescence anisotropy, and linear dichroism. Addition of DNA to helicene solutions results to a hypochromic shift of the visible absorption bands, an increase of fluorescence quantum yield and lifetime, a slowing down of fluorescence anisotropy decay, and a linear dichroism in flow-oriented DNA, which unambiguously points to the binding of these dyes to DNA. Both helicene monomers and dimeric aggregates, which form at higher concentration, bind to DNA, the former most probably upon intercalation and the latter upon groove binding. The binding constant depends substantially on the dye substituents and is, in all cases, larger with the M than the P enantiomer, by factors ranging from 1.2 to 2.3, depending on the dye.


Subject(s)
DNA/chemistry , Fluorescent Dyes/chemistry , Circular Dichroism , Fluorescence , Fluorescence Polarization , Intercalating Agents/chemistry , Molecular Structure , Spectrum Analysis , Stereoisomerism
5.
Photochem Photobiol Sci ; 11(4): 623-31, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22246477

ABSTRACT

The photophysical properties of a series of helicene cations in various solvents have been investigated using stationary and time-resolved spectroscopy. These compounds fluoresce in the near infrared region with a quantum yield ranging between 2 and 20% and a lifetime between 1 and 12 ns, depending of the solvent. No clear solvent dependence could be recognized except for a decrease of fluorescence quantum yield and lifetime with increasing hydrogen-bond donating ability of the solvent. In water, the helicene cations undergo aggregation. This effect manifests itself by the presence of a slow fluorescence decay component, whose amplitude increases with dye concentration, and by a much slower decay of the polarization anisotropy in water compared to an organic solvent of similar viscosity. However, aggregation has essentially no effect on the stationary fluorescence spectrum, whereas relatively small changes can be seen in the absorption spectrum. Analysis of the dependence of aggregation on the dye concentration reveals that the aggregates are mostly dimers and that the aggregation constant is substantially larger for hetero- than homochiral dimers.


Subject(s)
Polycyclic Compounds/chemistry , Cations/chemistry , Hydrogen Bonding , Quantum Theory , Solvents/chemistry , Spectrometry, Fluorescence , Stereoisomerism
6.
Chimia (Aarau) ; 65(5): 350-2, 2011.
Article in English | MEDLINE | ID: mdl-21744692

ABSTRACT

The activities of our research group in the field of photoinduced electron transfer reactions are discussed and illustrated by several examples.

7.
J Am Chem Soc ; 133(39): 15224-7, 2011 Oct 05.
Article in English | MEDLINE | ID: mdl-21678985

ABSTRACT

Facile access to complex systems is crucial to generate the functional materials of the future. Herein, we report self-organizing surface-initiated polymerization (SOSIP) as a user-friendly method to create ordered as well as oriented functional systems on transparent oxide surfaces. In SOSIP, self-organization of monomers and ring-opening disulfide exchange polymerization are combined to ensure the controlled growth of the polymer from the surface. This approach provides rapid access to thick films with smooth, reactivatable surfaces and long-range order with few defects and high precision, including panchromatic photosystems with oriented four-component redox gradients. The activity of SOSIP architectures is clearly better than that of disordered controls.

8.
Chemphyschem ; 10(9-10): 1517-32, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19565577

ABSTRACT

The excited-state dynamics of biotin-spacer-Lucifer-Yellow (LY) constructs bound to avidin (Avi) and streptavidin (Sav) was investigated using femtosecond spectroscopy. Two different locations in the proteins, identified by molecular dynamics simulations of Sav, namely the entrance of the binding pocket and the protein surface, were probed by varying the length of the spacer. A reduction of the excited-state lifetime, stronger in Sav than in Avi, was observed with the long spacer construct. Transient absorption measurements show that this effect originates from an electron transfer quenching of LY, most probably by a nearby tryptophan residue. The local environment of the LY chromophore could be probed by measuring the time-dependent polarisation anisotropy and Stokes shift of the fluorescence. Substantial differences in both dynamics were observed. The fluorescence anisotropy decays analysed by using the wobbling-in-a-cone model reveal a much more constrained environment of the chromophore with the short spacer. Moreover, the dynamic Stokes shift is multiphasic in all cases, with a approximately 1 ps component that can be ascribed to diffusive motion of bulk-like water molecules, and with slower components with time constants varying not only with the spacer, but with the protein as well. These slow components, which depend strongly on the local environment of the probe, are ascribed to the motion of the hydration layer coupled to the conformational dynamics of the protein.


Subject(s)
Avidin/chemistry , Fluorescent Dyes/chemistry , Streptavidin/chemistry , Anisotropy , Computer Simulation , Electron Transport , Fluorescence Polarization , Isoquinolines/chemistry , Protein Conformation , Spectrometry, Fluorescence , Time Factors
10.
J Am Chem Soc ; 131(31): 11106-16, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19610644

ABSTRACT

In this study, we describe synthesis, characterization, and zipper assembly of yellow p-oligophenyl naphthalenediimide (POP-NDI) donor-acceptor hybrids. Moreover, we disclose, for the first time, results from the functional comparison of zipper and layer-by-layer (LBL) assembly as well as quartz crystal microbalance (QCM), atomic force microscopy (AFM), and molecular modeling data on zipper assembly. Compared to the previously reported blue and red NDIs, yellow NDIs are more pi-acidic, easier to reduce, and harder to oxidize. The optoelectronic matching achieved in yellow POP-NDIs is reflected in quantitative and long-lived photoinduced charge separation, comparable to their red and much better than their blue counterparts. The direct comparison of zipper and LBL assemblies reveals that yellow zippers generate more photocurrent than blue zippers as well as LBL photosystems. Continuing linear growth found in QCM measurements demonstrates that photocurrent saturation at the critical assembly thickness occurs because more charges start to recombine before reaching the electrodes and not because of discontinued assembly. The found characteristics, such as significant critical thickness, strong photocurrents, large fill factors, and, according to AFM images, smooth surfaces, are important for optoelectronic performance and support the existence of highly ordered architectures.


Subject(s)
Electrochemical Techniques , Imides/chemistry , Naphthalenes/chemistry , Color
11.
J Phys Chem A ; 112(36): 8316-22, 2008 Sep 11.
Article in English | MEDLINE | ID: mdl-18707071

ABSTRACT

Optical spectroscopy and nanosecond flash photolysis (Nd:YAG laser, 355 nm, pulse duration 5 ns, mean energy 5 mJ/pulse) were used to study the photochemistry of Fe(III)(C2O4)3(3-) complex in aqueous solutions. The main photochemical process was found to be intramolecular electron transfer from the ligand to Fe(III) ion with formation of a primary radical complex [(C2O4)2Fe(II)(C2O4(*))](3-). The yield of radical species (i.e., CO2(*-) and C2O4(*-)) was found to be less than 6% of Fe(III)(C2O4)3(3-) disappeared after flash. [(C2O4)2Fe(II)(C2O4(*))](3-) dissociates reversibly into oxalate ion and a secondary radical complex, [(C2O4)Fe(II)(C2O4(*))](-). The latter reacts with the initial complex and dissociates to Fe(II)(C2O4) and oxalate radical. In this framework, the absorption spectra and rate constants of the reactions of all intermediates were determined.


Subject(s)
Oxalates/chemistry , Photochemistry , Photolysis , Absorption , Electron Transport , Free Radicals/chemistry , Lasers , Ligands , Solutions/chemistry , Spectrophotometry , Thermodynamics , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...