Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Aust Vet J ; 99(1-2): 46-54, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33227826

ABSTRACT

There are limited techniques available to assess the health of sea turtles as physical examination has little correlation to clinical findings, and blood reference intervals are broad and provide limited prognostic significance. Advances in the portability of ultrasound machines allow echocardiography to be increasingly used in the health assessments of wild animals. This study performed blood analysis and echocardiograms on 11 green sea turtles upon admission to a rehabilitation clinic and six animals before release. Significant differences were seen between groups, with admission animals having significantly smaller diameters of the cavum arteriosum at systole and diastole, smaller E-waves and an increased fractional shortening. Pre-release animals displayed significant increases in the maximum blood velocities of both the pulmonary artery and the left aorta. Significant negative correlations were seen between fractional shortening and uric acid and between the velocity time integral of the pulmonary artery and urea. The pulmonary artery velocity time integral was also significantly correlated to the E wave. Furthermore, there was asynchrony between the cavum arteriosum and the cavum pulmonale and the detection of a parasitic granuloma in the ventricular outflow tract of one animal. Overall, the results suggest that cardiac function in stranded green sea turtles is significantly impaired and that echocardiography has applications in the health assessments of green sea turtles.


Subject(s)
Turtles , Animals , Animals, Wild , Echocardiography/veterinary , Hematologic Tests/veterinary , Reference Values
3.
Conserv Physiol ; 7(1): coz042, 2019.
Article in English | MEDLINE | ID: mdl-31428427

ABSTRACT

Drumlines incorporating SMART (Shark-Management-Alert-in-Real-Time) technology are a new tool used in several bather protection programmes globally. In New South Wales (NSW), Australia, the white shark (Carcharodon carcharias) is a target species for SMART drumlines because they are often involved in attacks on humans. To understand white shark sensitivity to capture and to establish protocols around acceptable timeframes for responding to alerts, 47 juvenile and subadult white sharks were caught on SMART drumlines at five locations off the east coast of Australia. There was no at-vessel mortality during the sampling period. After capture, blood was sampled from each shark to assess its acute physiological status. Of the 18 metabolites investigated, only lactate and aspartate aminotransferase exhibited significant positive relationships with the capture duration on SMART drumlines. These results indicate that the capture process is relatively benign and that the current response times used here are appropriate to minimize long-term negative impacts on released white sharks. Where white sharks are likely to interact negatively with beachgoers, SMART drumlines can therefore be a useful addition to bather protection programmes that also aim to minimize harm to captured animals. Other shark species captured on SMART drumlines should also be investigated to gain broader understanding of potential physiological consequences of using this new technology.

4.
Oecologia ; 135(3): 431-41, 2003 May.
Article in English | MEDLINE | ID: mdl-12721834

ABSTRACT

The physical structure of a habitat generally has a strong influence on the diversity and abundance of associated organisms. I investigated the role of coralline algal turf structure in determining spatial variation of gastropod assemblages at different tidal heights of a rocky shore near Sydney, Australia. The structural characteristics of algal turf tested were frond density (or structural complexity) and frond length (the vertical scale over which structural complexity was measured). This definition of structural complexity assumes that complexity of the habitat increases with increasing frond density. While frond length was unrelated to gastropod community structure, I found significant correlations between density of fronds and multivariate and univariate measures of gastropod assemblages, indicating the importance of structural complexity. In contrast to previous studies, here there were negative relationships between the density of fronds and the richness and abundance of gastropods. Artificial habitat mimics were used to manipulate the density of fronds to test the hypothesis that increasing algal structural complexity decreases the richness and abundance of gastropods. As predicted, there were significantly more species of gastropods in loosely packed than in tightly packed turf at both low- and mid-shore levels. Despite large differences between gastropod assemblages at different tidal heights, the direction and magnitude of these negative effects were similar at low- and mid-shore levels and, therefore, relatively independent of local environmental conditions. These novel results extend our previous understanding of the ecological effects of habitat structure because they demonstrate possible limitations of commonly used definitions of structural complexity, as well as distinct upper thresholds in the relationship between structural complexity and faunal species richness.


Subject(s)
Classification , Eukaryota , Snails , Animals , Environment , Female , Geologic Sediments , Geological Phenomena , Geology , Male , Population Dynamics , Terminology as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...