Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(11)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072331

ABSTRACT

Hydrogel coating is highly suitable in biomaterial design. It provides biocompatibility and avoids protein adsorption leading to inflammation and rejection of implants. Moreover, hydrogels can be loaded with biologically active compounds. In this field, hyaluronic acid has been largely studied as an additional component since this polysaccharide is naturally present in extracellular matrix. Strategies to direct hydrogelation processes exclusively from the surface using a fully biocompatible approach are rare. Herein we have applied the concept of localized enzyme-assisted self-assembly to direct supramolecular hydrogels in the presence of HA. Based on electronic and fluorescent confocal microscopy, rheological measurements and cell culture investigations, this work highlights the following aspects: (i) the possibility to control the thickness of peptide-based hydrogels at the micrometer scale (18-41 µm) through the proportion of HA (2, 5 or 10 mg/mL); (ii) the structure of the self-assembled peptide nanofibrous network is affected by the growing amount of HA which induces the collapse of nanofibers leading to large assembled microstructures underpinning the supramolecular hydrogel matrix; (iii) this changing internal architecture induces a decrease of the elastic modulus from 2 to 0.2 kPa when concentration of HA is increasing; (iv) concomitantly, the presence of HA in supramolecular hydrogel coatings is suitable for cell viability and adhesion of NIH 3T3 fibroblasts.

2.
Angew Chem Int Ed Engl ; 59(51): 23283-23290, 2020 12 14.
Article in English | MEDLINE | ID: mdl-32857901

ABSTRACT

Tuning the dihedral angle (DA) of axially chiral compounds can impact biological activity, catalyst efficiency, molecular motor performance, or chiroptical properties. Herein, we report gradual, controlled, and reversible changes in molecular conformation of a covalently linked binaphthyl moiety within a 3D polymeric network by application of a macroscopic stretching force. We managed direct observation of DA changes by measuring the circular dichroism signal of an optically pure BINOL-crosslinked elastomer network. Stretching the elastomer resulted in a widening of the DA between naphthyl rings when the BINOL was doubly grafted to the elastomer network; no effect was observed when a single naphthyl ring of the BINOL was grafted to the elastomer network. We have determined that ca. 170 % extension of the elastomers led to the transfer of a mechanical force to the BINOL moiety of 2.5 kcal mol-1 Å-1 (ca. 175 pN) in magnitude and results in the opening of the DA of BINOL up to 130°.

3.
J Am Chem Soc ; 137(45): 14256-9, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26536147

ABSTRACT

Five-coordinate geometry is the standard binding mode of zinc porphyrins with pyridine ligands. Here we show that pseudo-octahedral six-coordinate zinc porphyrin complexes can also be formed in solution, by taking advantage of the chelate effect. UV-vis-NIR titrations indicate that the strength of this second coordination is ca. 6-8 kJ mol(-1). We have used the formation of six-coordinate zinc porphyrin complexes to achieve the template-directed synthesis of a 3D π-conjugated spiro-fused array of 11 porphyrin units, covalently connected in a nontrivial topology. Time-resolved fluorescence anisotropy experiments show that electronic excitation delocalizes between the two perpendicular nanorings of this spiro-system within the experimental time-resolution of 270 fs.

4.
Chem Sci ; 6(11): 6468-6481, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-30090266

ABSTRACT

Two donor-porphyrin-acceptor triads have been synthesized using a versatile Suzuki-coupling route. This synthetic strategy allows the powerful donor tetraalkylphenylenediamine (TAPD) to be introduced into tetraarylporphyrin-based triads without protection. The thermodynamics and kinetics of electron transfer in the new triads are compared with a previously reported octaalkyldiphenyl-porphyrin triad exhibiting a long-lived spin-polarized charge separate state (CSS), from theoretical and experimental perspectives, in both fluid solution and in a frozen solvent glass. We show that the less favorable oxidation potential of the tetraaryl-porphyrin core can be offset by using C60 , as a better electron-acceptor than triptycenenaphthoquinone (TNQ). The C60 -porphyrin-TAPD triad gives a spin-polarized charge-separated state that can be observed by EPR-spectroscopy, with a mean lifetime of 16 ms at 10 K, which is longer than in the previously reported TNQ-porphyrin-TAPD triad, following the predicted trend from calculated charge-recombination rates.

6.
Chemistry ; 17(29): 8145-55, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21647993

ABSTRACT

Benzo[ghi]perylene 1,2,4,5,10,11-hexacarboxylic trialkylimide and dialkylimido-dialkyl ester derivatives, displaying a thermodynamically stable hexagonal columnar liquid-crystalline phase at room temperature, have been obtained by the use of previously unexplored chiral racemic α-branched alkylimide functions. One of the trialkylimides described here is the first room temperature columnar solely oligo-alkylimide-substituted arene, and thus constitutes a prototype case of self-assembling organic acceptor materials. As the related hexacarboxylic hexaesters are found to exhibit only a weak tendency to form columnar mesophases, benzo[ghi]perylene 1,2,5,10-tetracarboxylic tetraalkyl esters have been synthesized by regioselective oxidative Diels-Alder addition of maleic anhydride to 3,10-dicyanoperylene, and a room temperature hexagonal columnar mesophase was obtained with branched alkyl chains. The acceptor-type electronic properties of the tri- and diimides have been found to be considerably more pronounced than those of the hexa- and tetracarboxylic esters, and to approach those of the prototype acceptor material C(60). The formation of bathochromically absorbing donor-acceptor complexes was observed with a di- or triimide as acceptor and a tetraester as donor, but not with a hexaester as donor. Exploiting the non-negligible differences in reduction and oxidation potentials between all four types of materials, the minimum HOMO energy difference necessary for charge-transfer-complex formation has been determined to lie between 0.29 and 0.35 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...