Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Pharmacol ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744683

ABSTRACT

BACKGROUND AND PURPOSE: Pulpitis is associated with tooth hypersensitivity and results in pulpal damage. Thermosensitive transient receptor potential (TRP) ion channels expressed in the dental pulp may be key transducers of inflammation and nociception. We aimed at investigating the expression and role of thermo-TRPs in primary human dental pulp cells (hDPCs) in normal and inflammatory conditions. EXPERIMENTAL APPROACH: Inflammatory conditions were induced in hDPC cultures by applying polyinosinic:polycytidylic acid (poly(I:C)). Gene expression and pro-inflammatory cytokine release were measured by RT-qPCR and ELISA. Functions of TRPA1 channels were investigated by monitoring changes in intracellular Ca2+ concentration. Mitochondrial superoxide production was measured using a fluorescent substrate. Cellular viability was assessed by measuring the activity of mitochondrial dehydrogenases and cytoplasmic esterases. TRPA1 activity was modified by agonists, antagonists, and gene silencing. KEY RESULTS: Transcripts of TRPV1, TRPV2, TRPV4, TRPC5, and TRPA1 were highly expressed in control hDPCs, whereas TRPV3, TRPM2, and TRPM3 expressions were much lower, and TRPM8 was not detected. Poly(I:C) markedly up-regulated TRPA1 but not other thermo-TRPs. TRPA1 agonist-induced Ca2+ signals were highly potentiated in inflammatory conditions. Poly(I:C)-treated cells displayed increased Ca2+ responses to H2O2, which was abolished by TRPA1 antagonists. Inflammatory conditions induced oxidative stress, stimulated mitochondrial superoxide production, resulted in mitochondrial damage, and decreased cellular viability of hDPCs. This inflammatory cellular damage was partly prevented by the co-application of TRPA1 antagonist or TRPA1 silencing. CONCLUSION AND IMPLICATIONS: Pharmacological blockade of TRPA1 channels may be a promising therapeutic approach to alleviate pulpitis and inflammation-associated pulpal damage.

3.
Biochem Pharmacol ; 183: 114310, 2021 01.
Article in English | MEDLINE | ID: mdl-33130130

ABSTRACT

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Subject(s)
Nociception/physiology , Pruritus/chemically induced , Pruritus/metabolism , TRPM Cation Channels/deficiency , Animals , Capsaicin/toxicity , Endothelin-1/toxicity , Histamine/toxicity , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , TRPM Cation Channels/antagonists & inhibitors
4.
Biochem Pharmacol ; 174: 113826, 2020 04.
Article in English | MEDLINE | ID: mdl-31987857

ABSTRACT

BACKGROUND: Volatile anaesthetics (VAs) are the most widely used compounds to induce reversible loss of consciousness and maintain general anaesthesia during surgical interventions. Although the mechanism of their action is not yet fully understood, it is generally believed, that VAs depress central nervous system functions mainly through modulation of ion channels in the neuronal membrane, including 2-pore-domain K+ channels, GABA and NMDA receptors. Recent research also reported their action on nociceptive and thermosensitive TRP channels expressed in the peripheral nervous system, including TRPV1, TRPA1, and TRPM8. Here, we investigated the effect of VAs on TRPM3, a less characterized member of the thermosensitive TRP channels playing a central role in noxious heat sensation. METHODS: We investigated the effect of VAs on the activity of recombinant and native TRPM3, by monitoring changes in the intracellular Ca2+ concentration and measuring TRPM3-mediated transmembrane currents. RESULTS: All the investigated VAs (chloroform, halothane, isoflurane, sevoflurane) inhibited both the agonist-induced (pregnenolone sulfate, CIM0216) and heat-activated Ca2+ signals and transmembrane currents in a concentration dependent way in HEK293T cells overexpressing recombinant TRPM3. Among the tested VAs, halothane was the most potent blocker (IC50 = 0.52 ± 0.05 mM). We also investigated the effect of VAs on native TRPM3 channels expressed in sensory neurons of the dorsal root ganglia. While VAs activated certain sensory neurons independently of TRPM3, they strongly and reversibly inhibited the agonist-induced TRPM3 activity. CONCLUSIONS: These data provide a better insight into the molecular mechanism beyond the analgesic effect of VAs and propose novel strategies to attenuate TRPM3 dependent nociception.


Subject(s)
Anesthetics, Inhalation/pharmacology , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , TRPM Cation Channels/antagonists & inhibitors , TRPM Cation Channels/metabolism , Animals , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL
5.
J Invest Dermatol ; 138(8): 1774-1784, 2018 08.
Article in English | MEDLINE | ID: mdl-29550417

ABSTRACT

This study revealed the modulatory role of transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) cation channels in the Aldara-induced (5% imiquimod) murine psoriasis model using selective antagonists and genetically altered animals. We have also developed a refined localized model to enable internal controls and reduce systemic effects. Skin pathology was quantified by measuring skin thickness, scaling, blood flow, and analyzing dermal cellular infiltrate, whereas nocifensive behaviors were also observed. Cytokine gene expression profiles were measured ex vivo. Psoriasiform dermatitis was significantly enhanced in TRPA1 knockout mice and with TRPA1 antagonist (A967079) treatment. By comparison, symptoms were decreased when TRPV1 function was inhibited. Imiquimod induced Ca2+ influx in TRPA1-, but not in TRPV1-expressing cell lines. Immunohistochemical studies revealed that CD4+ T helper cells express TRPA1 but not TRPV1 ion channels in mice skin. Compared with the TRPV1 knockout animals, additional elimination of the TRPA1 channels in the TRPV1/TRPA1 double knockout mice did not modify the outcome of the imiquimod-induced reaction, further supporting the dominant role of TRPV1 in the process. Our results suggest that the protective effects in psoriasiform dermatitis can be mediated by the activation of neuronal and nonneuronal TRPA1 receptors.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Psoriasis/immunology , TRPA1 Cation Channel/immunology , TRPV Cation Channels/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Cell Line , Disease Models, Animal , Female , Humans , Imiquimod/toxicity , Male , Mice , Mice, Knockout , Neurons/metabolism , Oximes/pharmacology , Psoriasis/chemically induced , Psoriasis/pathology , Skin/drug effects , Skin/immunology , Skin/innervation , Skin/pathology , TRPA1 Cation Channel/antagonists & inhibitors , TRPA1 Cation Channel/genetics , TRPV Cation Channels/metabolism
6.
Br J Pharmacol ; 174(23): 4493-4507, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28945920

ABSTRACT

BACKGROUND AND PURPOSE: Heat-sensitive transient receptor potential vanilloid (TRPV) channels are expressed in various epithelial tissues regulating, among else, barrier functions. Their expression is well established in the distal nephron; however, we have no data about their presence in podocytes. As podocytes are indispensable in the formation of the glomerular filtration barrier, we investigated the presence and function of Ca2+ -permeable TRPV1-4 channels in human podocyte cultures. EXPERIMENTAL APPROACH: Expression of TRPV1-4 channels was investigated at protein (immunocytochemistry, Western blot) and mRNA (Q-PCR) level in a conditionally immortalized human podocyte cell line. Channel function was assessed by measuring intracellular Ca2+ concentration using Flou-4 Ca2+ -indicator dye and patch clamp electrophysiology upon applying various activators and inhibitors. KEY RESULTS: Thermosensitive TRP channels were expressed in podocytes. The TRPV1-specific agonists capsaicin and resiniferatoxin did not affect the intracellular Ca2+ concentration. Cannabidiol, an activator of TRPV2 and TRPV4 channels, induced moderate Ca2+ -influxes, inhibited by both tranilast and HC067047, blockers of TRPV2 and TRPV4 channels respectively. The TRPV4-specific agonists GSK1016790A and 4α-phorbol 12,13-didecanoate induced robust Ca2+ -signals which were abolished by HC067047. Non-specific agonists of TRPV3 channels induced marked Ca2+ transients. However, TRPV3 channel blockers, ruthenium red and isopentenyl diphosphate only partly inhibited the responses and TRPV3 silencing was ineffective suggesting remarkable off-target effects of the compounds. CONCLUSION AND IMPLICATIONS: Our results indicate the functional presence of TRPV4 and other thermosensitive TRPV channels in human podocytes and raise the possibility of their involvement in the regulation of glomerular filtration barrier.


Subject(s)
Calcium/metabolism , Glomerular Filtration Barrier/metabolism , Podocytes/metabolism , TRPV Cation Channels/metabolism , Calcium Signaling/drug effects , Cannabidiol/pharmacology , Capsaicin/pharmacology , Cell Line , Diterpenes/pharmacology , Humans , Patch-Clamp Techniques , Podocytes/drug effects , RNA, Messenger/metabolism , TRPV Cation Channels/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...