Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 11(9): 3893-8, 2011 Sep 14.
Article in English | MEDLINE | ID: mdl-21861482

ABSTRACT

We investigate the vibrational modes of gold nanorings on a silica substrate with an ultrafast optical technique. By comparison with numerical simulations, we identify several resonances in the gigahertz range associated with axially symmetric deformations of the nanoring and substrate. We elucidate the corresponding mode shapes and find that the substrate plays an important role in determining the mode damping. This study demonstrates the need for a plasmonic nano-optics approach to understand the optical excitation and detection mechanisms for the vibrations of plasmonic nanostructures.

2.
Nanotechnology ; 21(28): 285105, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20585157

ABSTRACT

We report a systematic empirical study of nanoparticle internalization into cells via non-specific pathways. The nanoparticles were comprised of commercial quantum dots (QDs) that were highly visible under a fluorescence confocal microscope. Surface-modified QDs with basic biologically significant moieties, e.g. carboxyl, amino, and streptavidin, were used, in combination with surface derivatization with polyethylene glycol (PEG) for a range of immortalized cell lines. Internalization rates were derived from image analysis and a detailed discussion about the effect of nanoparticle size, charge and surface groups is presented. We find that PEG derivatization dramatically suppresses the non-specific uptake while PEG-free carboxyl and amine functional groups promote QD internalization. These uptake variations displayed a remarkable consistency across different cell types. The reported results are important for experiments concerned with cellular uptake of surface-functionalized nanomaterials, both when non-specific internalization is undesirable and when it is intended for material to be internalized as efficiently as possible.


Subject(s)
Endocytosis , Quantum Dots , Animals , Cell Line, Tumor , Hydrogen-Ion Concentration , Microscopy, Fluorescence , Particle Size , Rats , Surface Properties
3.
Opt Lett ; 34(23): 3740-2, 2009 Dec 01.
Article in English | MEDLINE | ID: mdl-19953180

ABSTRACT

We use ultrashort optical pulses to excite and detect vibrations of single silica spheres with a diameter of 5 microm placed at the surface of an acoustically mismatched substrate. In addition to the photoelastic detection of picosecond longitudinal acoustic pulses propagating inside the bulk, we detect gigahertz acoustic resonances of the sphere through probe beam defocusing. The mode frequencies are in close accord with those calculated from the elastic vibrations of a free sphere. We also record a resonant enhancement in the amplitude of specific modes of two touching spheres.

4.
Phys Rev Lett ; 97(26): 266808, 2006 Dec 31.
Article in English | MEDLINE | ID: mdl-17280454

ABSTRACT

Hybrid emitting exciton-plasmonic composites are constructed by coating arrays of spherical nanovoids embedded in a gold film with organic semiconducting molecular J-aggregate films. In such plasmonic crystals, localized plasmons confined inside the voids can be excited. We report the first observation of polaritonic spectral narrowing and strong coupling between localized plasmons and J-aggregate excitons with Rabi splittings of 230 meV at room temperature.

5.
Phys Rev Lett ; 95(11): 116802, 2005 Sep 09.
Article in English | MEDLINE | ID: mdl-16197028

ABSTRACT

Nanostructured metal surfaces comprised of periodically arranged spherical voids are grown by electrochemical deposition through a self-assembled template. Detailed measurements of the angle- and orientation-dependent reflectivity reveal the spectral dispersion, from which we identify the presence of both delocalized Bragg and localized Mie plasmons. These couple strongly producing bonding and antibonding mixed plasmons with anomalous dispersion properties. Appropriate plasmon engineering of the void morphology selects the plasmon spatial and spectral positions, allowing these plasmonic crystal films to be optimized for a wide range of sensing applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...