Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 107(4): 043002, 2011 Jul 22.
Article in English | MEDLINE | ID: mdl-21866998

ABSTRACT

We report experiments where hydrogen molecules were dissociatively ionized by an attosecond pulse train in the presence of a near-infrared field. Fragment ion yields from distinguishable ionization channels oscillate with a period that is half the optical cycle of the IR field. For molecules aligned parallel to the laser polarization axis, the oscillations are reproduced in two-electron quantum simulations, and can be explained in terms of an interference between ionization pathways that involve different harmonic orders and a laser-induced coupling between the 1sσ(g) and 2pσ(u) states of the molecular ion. This leads to a situation where the ionization probability is sensitive to the instantaneous polarization of the molecule by the IR electric field and demonstrates that we have probed the IR-induced electron dynamics with attosecond pulses.

2.
Opt Express ; 19(25): 25346-54, 2011 Dec 05.
Article in English | MEDLINE | ID: mdl-22273926

ABSTRACT

We investigate possibilities to utilize field enhancement by specifically designed metal nanostructures for the generation of single attosecond pulses using the polarization gating technique. We predict the generation of isolated 59-attosecond-long pulses using 15-fs pump pulses with only a 0.6 TW/cm2 intensity. Our simulations also indicate the possibility to generate previously inaccessible high-harmonics with circular polarization by using an ensemble of vertically and horizontally orientated bow-tie structures. In the numerical simulation we used an extended Lewenstein model, which includes the spatial inhomogeneity in the hot spots and collisions of electrons with the metal surface.


Subject(s)
Metal Nanoparticles/chemistry , Models, Chemical , Refractometry/methods , Surface Plasmon Resonance/methods , Computer Simulation , Light , Metal Nanoparticles/ultrastructure , Scattering, Radiation
3.
Phys Rev Lett ; 105(5): 053001, 2010 Jul 30.
Article in English | MEDLINE | ID: mdl-20867908

ABSTRACT

We present an interferometric pump-probe technique for the characterization of attosecond electron wave packets (WPs) that uses a free WP as a reference to measure a bound WP. We demonstrate our method by exciting helium atoms using an attosecond pulse (AP) with a bandwidth centered near the ionization threshold, thus creating both a bound and a free WP simultaneously. After a variable delay, the bound WP is ionized by a few-cycle infrared laser precisely synchronized to the original AP. By measuring the delay-dependent photoelectron spectrum we obtain an interferogram that contains both quantum beats as well as multipath interference. Analysis of the interferogram allows us to determine the bound WP components with a spectral resolution much better than the inverse of the AP duration.

4.
Nature ; 465(7299): 763-6, 2010 Jun 10.
Article in English | MEDLINE | ID: mdl-20535207

ABSTRACT

For the past several decades, we have been able to directly probe the motion of atoms that is associated with chemical transformations and which occurs on the femtosecond (10(-15)-s) timescale. However, studying the inner workings of atoms and molecules on the electronic timescale has become possible only with the recent development of isolated attosecond (10(-18)-s) laser pulses. Such pulses have been used to investigate atomic photoexcitation and photoionization and electron dynamics in solids, and in molecules could help explore the prompt charge redistribution and localization that accompany photoexcitation processes. In recent work, the dissociative ionization of H(2) and D(2) was monitored on femtosecond timescales and controlled using few-cycle near-infrared laser pulses. Here we report a molecular attosecond pump-probe experiment based on that work: H(2) and D(2) are dissociatively ionized by a sequence comprising an isolated attosecond ultraviolet pulse and an intense few-cycle infrared pulse, and a localization of the electronic charge distribution within the molecule is measured that depends-with attosecond time resolution-on the delay between the pump and probe pulses. The localization occurs by means of two mechanisms, where the infrared laser influences the photoionization or the dissociation of the molecular ion. In the first case, charge localization arises from quantum mechanical interference involving autoionizing states and the laser-altered wavefunction of the departing electron. In the second case, charge localization arises owing to laser-driven population transfer between different electronic states of the molecular ion. These results establish attosecond pump-probe strategies as a powerful tool for investigating the complex molecular dynamics that result from the coupling between electronic and nuclear motions beyond the usual Born-Oppenheimer approximation.

5.
Phys Rev Lett ; 103(12): 123005, 2009 Sep 18.
Article in English | MEDLINE | ID: mdl-19792432

ABSTRACT

We present a combined theoretical and experimental study of ultrafast wave-packet dynamics in the dissociative ionization of H_{2} molecules as a result of irradiation with an extreme-ultraviolet (XUV) pulse followed by an infrared (IR) pulse. In experiments where the duration of both the XUV and IR pulses are shorter than the vibrational period of H_{2};{+}, dephasing and rephasing of the vibrational wave packet that is formed in H_{2};{+} upon ionization of the neutral molecule by the XUV pulse is observed. In experiments where the duration of the IR pulse exceeds the vibrational period of H_{2};{+} (15 fs), a pronounced dependence of the H;{+} kinetic energy distribution on XUV-IR delay is observed that can be explained in terms of the adiabatic propagation of the H_{2};{+} wave packet on field-dressed potential energy curves.

SELECTION OF CITATIONS
SEARCH DETAIL
...