Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Med Inform Assoc ; 31(4): 1009-1024, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38366879

ABSTRACT

OBJECTIVES: Question answering (QA) systems have the potential to improve the quality of clinical care by providing health professionals with the latest and most relevant evidence. However, QA systems have not been widely adopted. This systematic review aims to characterize current medical QA systems, assess their suitability for healthcare, and identify areas of improvement. MATERIALS AND METHODS: We searched PubMed, IEEE Xplore, ACM Digital Library, ACL Anthology, and forward and backward citations on February 7, 2023. We included peer-reviewed journal and conference papers describing the design and evaluation of biomedical QA systems. Two reviewers screened titles, abstracts, and full-text articles. We conducted a narrative synthesis and risk of bias assessment for each study. We assessed the utility of biomedical QA systems. RESULTS: We included 79 studies and identified themes, including question realism, answer reliability, answer utility, clinical specialism, systems, usability, and evaluation methods. Clinicians' questions used to train and evaluate QA systems were restricted to certain sources, types and complexity levels. No system communicated confidence levels in the answers or sources. Many studies suffered from high risks of bias and applicability concerns. Only 8 studies completely satisfied any criterion for clinical utility, and only 7 reported user evaluations. Most systems were built with limited input from clinicians. DISCUSSION: While machine learning methods have led to increased accuracy, most studies imperfectly reflected real-world healthcare information needs. Key research priorities include developing more realistic healthcare QA datasets and considering the reliability of answer sources, rather than merely focusing on accuracy.


Subject(s)
Health Personnel , Point-of-Care Systems , Humans , Reproducibility of Results , PubMed , Machine Learning
2.
J Clin Epidemiol ; 153: 26-33, 2023 01.
Article in English | MEDLINE | ID: mdl-36150548

ABSTRACT

OBJECTIVES: The aim of this study is to describe and pilot a novel method for continuously identifying newly published trials relevant to a systematic review, enabled by combining artificial intelligence (AI) with human expertise. STUDY DESIGN AND SETTING: We used RobotReviewer LIVE to keep a review of COVID-19 vaccination trials updated from February to August 2021. We compared the papers identified by the system with those found by the conventional manual process by the review team. RESULTS: The manual update searches (last search date July 2021) retrieved 135 abstracts, of which 31 were included after screening (23% precision, 100% recall). By the same date, the automated system retrieved 56 abstracts, of which 31 were included after manual screening (55% precision, 100% recall). Key limitations of the system include that it is limited to searches of PubMed/MEDLINE, and considers only randomized controlled trial reports. We aim to address these limitations in future. The system is available as open-source software for further piloting and evaluation. CONCLUSION: Our system identified all relevant studies, reduced manual screening work, and enabled rolling updates on publication of new primary research.


Subject(s)
Artificial Intelligence , COVID-19 , Humans , Pilot Projects , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , PubMed
3.
Article in English | MEDLINE | ID: mdl-35663506

ABSTRACT

Medical question answering (QA) systems have the potential to answer clinicians' uncertainties about treatment and diagnosis on-demand, informed by the latest evidence. However, despite the significant progress in general QA made by the NLP community, medical QA systems are still not widely used in clinical environments. One likely reason for this is that clinicians may not readily trust QA system outputs, in part because transparency, trustworthiness, and provenance have not been key considerations in the design of such models. In this paper we discuss a set of criteria that, if met, we argue would likely increase the utility of biomedical QA systems, which may in turn lead to adoption of such systems in practice. We assess existing models, tasks, and datasets with respect to these criteria, highlighting shortcomings of previously proposed approaches and pointing toward what might be more usable QA systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...