Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 11(12): e0166762, 2016.
Article in English | MEDLINE | ID: mdl-27973617

ABSTRACT

BACKGROUND: Despite numerous studies of geographic variation in healthcare cost and utilization at the local, regional, and state levels across the U.S., a comprehensive characterization of geographic variation in outcomes has not been published. Our objective was to quantify variation in US health outcomes in an all-payer population before and after risk-adjustment. METHODS AND FINDINGS: We used information from 16 independent data sources, including 22 million all-payer inpatient admissions from the Healthcare Cost and Utilization Project (which covers regions where 50% of the U.S. population lives) to analyze 24 inpatient mortality, inpatient safety, and prevention outcomes. We compared outcome variation at state, hospital referral region, hospital service area, county, and hospital levels. Risk-adjusted outcomes were calculated after adjusting for population factors, co-morbidities, and health system factors. Even after risk-adjustment, there exists large geographical variation in outcomes. The variation in healthcare outcomes exceeds the well publicized variation in US healthcare costs. On average, we observed a 2.1-fold difference in risk-adjusted mortality outcomes between top- and bottom-decile hospitals. For example, we observed a 2.3-fold difference for risk-adjusted acute myocardial infarction inpatient mortality. On average a 10.2-fold difference in risk-adjusted patient safety outcomes exists between top and bottom-decile hospitals, including an 18.3-fold difference for risk-adjusted Central Venous Catheter Bloodstream Infection rates. A 3.0-fold difference in prevention outcomes exists between top- and bottom-decile counties on average; including a 2.2-fold difference for risk-adjusted congestive heart failure admission rates. The population, co-morbidity, and health system factors accounted for a range of R2 between 18-64% of variability in mortality outcomes, 3-39% of variability in patient safety outcomes, and 22-70% of variability in prevention outcomes. CONCLUSION: The amount of variability in health outcomes in the U.S. is large even after accounting for differences in population, co-morbidities, and health system factors. These findings suggest that: 1) additional examination of regional and local variation in risk-adjusted outcomes should be a priority; 2) assumptions of uniform hospital quality that underpin rationale for policy choices (such as narrow insurance networks or antitrust enforcement) should be challenged; and 3) there exists substantial opportunity for outcomes improvement in the US healthcare system.


Subject(s)
Health Care Costs , Hospitals/statistics & numerical data , Outcome Assessment, Health Care , Risk Adjustment , Comorbidity , Data Collection , Economics, Medical , Geography , Health Policy , Health Services Research , Hospitalization , Humans , Inpatients , Risk Assessment , Risk Factors , United States
3.
Langmuir ; 26(6): 3771-3, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20158279

ABSTRACT

A novel step-by-step method employing microwave-assisted Sonogashira coupling is developed to grow fully conjugated organosilicon structures. As the first case study, p-(4-bromophenyl)acetylene is covalently conjugated to a p-(4-iodophenyl)acetylene-derived monolayer on a Si(111) surface. By bridging the two aromatic rings with C[triple bond]C, the pregrown monolayer is structurally extended outward from the Si surface, forming a fully conjugated (p-(4-bromophenylethynyl)phenyl)vinylene film. The film growth process, which reaches 90% yield after 2 h, is characterized thoroughly at each step by using X-ray reflectivity (XRR), X-ray standing waves (XSW), and X-ray fluorescence (XRF). The high yield and short reaction time offered by microwave-assisted surface Sonogashira coupling chemistry make it a promising strategy for functionalizing Si surfaces.


Subject(s)
Microwaves , Organic Chemicals/chemistry , Silicon/chemistry , X-Rays
4.
Langmuir ; 23(4): 1905-11, 2007 Feb 13.
Article in English | MEDLINE | ID: mdl-17279673

ABSTRACT

Organic functionalization of silicon holds promise for a variety of applications ranging from molecular electronics to biosensing. Because the performance and reliability of organosilicon devices will be intimately tied to the detailed structure of the organic adlayers, it is imperative to develop systematic strategies for forming and characterizing self-assembled monolayers (SAMs) on silicon with submolecular spatial resolution. In this study, we use 4-bromostyrene for the photochemical growth of Br-terminated SAMs on Si(111). A variety of experimental and theoretical techniques including atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), X-ray reflectivity (XRR), X-ray standing waves (XSW), X-ray fluorescence (XRF), and density functional theory (DFT) have been employed to determine the coverage and conformation of the 4-bromostryene molecules within the SAM. In particular, AFM verifies a continuous and atomically flat SAM, and the XRR data indicate a SAM thickness of 8.50 A and a molecular coverage of 46% of the surface silicon atoms. Because the DFT calculations indicate a molecular length of 8.89 A, the measured XRR thickness implies a molecular tilt angle of approximately 17 degrees. The XRR analysis also suggests that the Br atoms are preserved on top of the SAM in agreement with XPS measurements that show bromine bound solely to carbon and not to silicon. XRF reveals a Br atomic coverage of 50%, again in close agreement to that found by XRR. Single-crystal Bragg diffraction XSW is used to generate a three-dimensional map of the Br distribution within the SAM, which in conjunction with the XRR result suggests that the 4-bromostyrene molecules are tilted such that the Br atoms are located over the T4 sites at a height of 8.50 A above the top bulklike Si(111) layer. The direction of molecular tilt toward the T4 sites is consistent with that predicted by the DFT calculation. Overall, through this unique suite of complementary structural characterization techniques, it is concluded that the Br functional handle is preserved at the top of the SAM and is available for further substitutional chemistry.


Subject(s)
Silicon/chemistry , Styrenes/chemistry , Microscopy, Atomic Force , Models, Molecular , Molecular Conformation , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...