Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Anal Chem ; 90(10): 6109-6115, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29671313

ABSTRACT

Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of "burst" confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution. The confocal tracking microscope utilizes closed-loop feedback to follow the particle in solution by recentering it within two overlapping tetrahedral detection elements, corresponding to donor and acceptor channels. We demonstrated the microscope's multicolor tracking capability via random walk simulations and experimental tracking of 200 nm fluorescent beads in water with a range of apparent smFRET efficiency values, 0.45-0.69. We also demonstrated the microscope's capability to track and quantify double-stranded DNA undergoing intramolecular smFRET in a viscous glycerol solution. In future experiments, the smFRET 3D tracking system will be used to study protein conformational dynamics while diffusing in solution and native biological environments with high temporal resolution.


Subject(s)
Color , DNA/analysis , Fluorescence Resonance Energy Transfer , Fluorescence , Solutions , Surface Properties
2.
Proc SPIE Int Soc Opt Eng ; 93382015 Mar 12.
Article in English | MEDLINE | ID: mdl-25932286

ABSTRACT

Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells. Signal-to-noise is improved in the cellular milieu through the use of pulsed excitation and time-gated detection.

3.
Chem Sci ; 6(4): 2224-false, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-29163879

ABSTRACT

Hybrid semiconductor-metal nanoscale constructs are of both fundamental and practical interest. Semiconductor nanocrystals are active emitters of photons when stimulated optically, while the interaction of light with nanosized metal objects results in scattering and ohmic damping due to absorption. In a combined structure, the properties of both components can be realized together. At the same time, metal-semiconductor coupling may intervene to modify absorption and/or emission processes taking place in the semiconductor, resulting in a range of effects from photoluminescence quenching to enhancement. We show here that photostable 'giant' quantum dots when placed at the center of an ultrathin gold shell retain their key optical property of bright and blinking-free photoluminescence, while the metal shell imparts efficient photothermal transduction. The latter is despite the highly compact total particle size (40-60 nm "inorganic" diameter and <100 nm hydrodynamic diameter) and the very thin nature of the optically transparent Au shell. Importantly, the sensitivity of the quantum dot emission to local temperature provides a novel internal thermometer for recording temperature during infrared irradiation-induced photothermal heating.

4.
Adv Funct Mater ; 24(30): 4796-4803, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-25798080

ABSTRACT

While semiconductor quantum dots (QDs) have been used successfully in numerous single particle tracking (SPT) studies due to their high photoluminescence efficiency, photostability, and broad palette of emission colors, conventional QDs exhibit fluorescence intermittency or 'blinking,' which causes ambiguity in particle trajectory analysis and limits tracking duration. Here, non-blinking 'giant' quantum dots (gQDs) are exploited to study IgE-FcεRI receptor dynamics in live cells using a confocal-based 3D SPT microscope. There is a 7-fold increase in the probability of observing IgE-FcεRI for longer than 1 min using the gQDs compared to commercially available QDs. A time-gated photon-pair correlation analysis is implemented to verify that selected SPT trajectories are definitively from individual gQDs and not aggregates. The increase in tracking duration for the gQDs allows the observation of multiple changes in diffusion rates of individual IgE-FcεRI receptors occurring on long (>1 min) time scales, which are quantified using a time-dependent diffusion coefficient and hidden Markov modeling. Non-blinking gQDs should become an important tool in future live cell 2D and 3D SPT studies, especially in cases where changes in cellular dynamics are occurring on the time scale of several minutes.

5.
Biochemistry ; 52(41): 7170-83, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24053279

ABSTRACT

Understanding how cells regulate and transport metal ions is an important goal in the field of bioinorganic chemistry, a frontier research area that resides at the interface of chemistry and biology. This Current Topic reviews recent advances from the authors' group in using single-molecule fluorescence imaging techniques to identify the mechanisms of metal homeostatic proteins, including metalloregulators and metallochaperones. It emphasizes the novel mechanistic insights into how dynamic protein-DNA and protein-protein interactions offer efficient pathways via which MerR-family metalloregulators and copper chaperones can fulfill their functions. This work also summarizes other related single-molecule studies of bioinorganic systems and provides an outlook toward single-molecule imaging of metalloprotein functions in living cells.


Subject(s)
DNA-Binding Proteins/metabolism , Metallochaperones/metabolism , Metals/metabolism , Animals , DNA-Binding Proteins/chemistry , Fluorescence Resonance Energy Transfer , Humans , Metallochaperones/chemistry , Metallochaperones/genetics
6.
J Am Chem Soc ; 134(21): 8934-43, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22578168

ABSTRACT

As part of intracellular copper trafficking pathways, the human copper chaperone Hah1 delivers Cu(+) to the Wilson's Disease Protein (WDP) via weak and dynamic protein-protein interactions. WDP contains six homologous metal binding domains (MBDs) connected by flexible linkers, and these MBDs all can receive Cu(+) from Hah1. The functional roles of the MBD multiplicity in Cu(+) trafficking are not well understood. Building on our previous study of the dynamic interactions between Hah1 and the isolated fourth MBD of WDP, here we study how Hah1 interacts with MBD34, a double-domain WDP construct, using single-molecule fluorescence resonance energy transfer (smFRET) combined with vesicle trapping. By alternating the positions of the smFRET donor and acceptor, we systematically probed Hah1-MBD3, Hah1-MBD4, and MBD3-MBD4 interaction dynamics within the multidomain system. We found that the two interconverting interaction geometries were conserved in both intermolecular Hah1-MBD and intramolecular MBD-MBD interactions. The Hah1-MBD interactions within MBD34 are stabilized by an order of magnitude relative to the isolated single-MBDs, and thermodynamic and kinetic evidence suggest that Hah1 can interact with both MBDs simultaneously. The enhanced interaction stability of Hah1 with the multi-MBD system, the dynamic intramolecular MBD-MBD interactions, and the ability of Hah1 to interact with multiple MBDs simultaneously suggest an efficient and versatile mechanism for the Hah1-to-WDP pathway to transport Cu(+).


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Copper/metabolism , Adenosine Triphosphatases/chemistry , Biological Transport , Cation Transport Proteins/chemistry , Copper-Transporting ATPases , Fluorescence Resonance Energy Transfer , Humans , Kinetics , Molecular Dynamics Simulation , Protein Binding , Protein Stability , Protein Structure, Tertiary
7.
Faraday Discuss ; 148: 71-82; discussion 97-108, 2011.
Article in English | MEDLINE | ID: mdl-21322478

ABSTRACT

Metallochaperones undertake specific interactions with their target proteins to deliver metal ions inside cells. Understanding how these protein interactions are coupled with the underlying metal transfer process is important, but challenging because they are weak and dynamic. Here we use a nanovesicle trapping scheme to enable single-molecule FRET measurements of the weak, dynamic interactions between the copper chaperone Hahl and the fourth metal binding domain (MBD4) of WDP. By monitoring the behaviors of single interacting pairs, we visualize their interactions in real time in both the absence and the presence of various equivalents of Cu(1+). Regardless of the proteins' metallation state, we observe multiple, interconverting interaction complexes between Hah1 and MBD4. Within our experimental limit, the overall interaction geometries of these complexes appear invariable, but their stabilities are dependent on the proteins' metallation state. In apo-holo Hah1-MBD4 interactions, the complexes are stabilized relative to that observed in the apo-apo interactions. This stabilization is indiscernible when Hah1's Cu(1+)-binding is eliminated or when both proteins have Cu(1+) loaded. The nature of this Cu(1+)-induced complex stabilization and of the interaction complexes are discussed. These Cu(1+)-induced effects on the Hah1-MBD4 interactions provide a step toward understanding how the dynamic protein interactions of copper chaperones are coupled with their metal transfer function.


Subject(s)
Copper/chemistry , Metallochaperones/chemistry , Fluorescence Resonance Energy Transfer , Magnetic Resonance Spectroscopy
8.
Methods Enzymol ; 472: 41-60, 2010.
Article in English | MEDLINE | ID: mdl-20580959

ABSTRACT

Protein-protein interactions are fundamental biological processes. While strong protein interactions are amenable to many characterization techniques including crystallography, weak protein interactions are challenging to study because of their dynamic nature. Single-molecule fluorescence resonance energy transfer (smFRET) can monitor dynamic protein interactions in real time, but are generally limited to strong interacting pairs because of the low concentrations needed for single-molecule detection. Here, we describe a nanovesicle trapping approach to enable smFRET study of weak protein interactions at high effective concentrations. We describe the experimental procedures, summarize the application in studying the weak interactions between intracellular copper transporters, and detail the single-molecule kinetic analysis of bimolecular interactions involving three states. Both the experimental approach and the theoretical analysis are generally applicable to studying many other biological processes at the single-molecule level.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Nanostructures/chemistry , Proteins , Animals , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Humans , Lipids/chemistry , Models, Biological , Particle Size , Proteins/chemistry , Proteins/metabolism
9.
Nat Prod Rep ; 27(5): 757-67, 2010 May.
Article in English | MEDLINE | ID: mdl-20442963

ABSTRACT

To maintain normal metal metabolism, organisms utilize dynamic cooperation of many biomacromolecules for regulating metal ion concentrations and bioavailability. How these biomacromolecules work together to achieve their functions is largely unclear. For example, how do metalloregulators and DNA interact dynamically to control gene expression to maintain healthy cellular metal level? And how do metal transporters collaborate dynamically to deliver metal ions? Here we review recent advances in studying the dynamic interactions of macromolecular machineries for metal regulation and transport at the single-molecule level: (1) The development of engineered DNA Holliday junctions as single-molecule reporters for metalloregulator-DNA interactions, focusing onMerR-family regulators. And (2) The development of nanovesicle trapping coupled with single molecule fluorescence resonance energy transfer (smFRET) for studying weak, transient interactions between the copper chaperone Hah1 and the Wilson disease protein. We describe the methodologies,the information content of the single-molecule results, and the insights into the biological functions of the involved biomacromolecules for metal regulation and transport. We also discuss remaining challenges from our perspective.


Subject(s)
Metals/metabolism , Models, Molecular , Adenosine Triphosphatases/metabolism , Biological Transport , Cation Transport Proteins/metabolism , Copper/metabolism , Copper-Transporting ATPases , DNA/metabolism , Homeostasis/physiology , Humans , Molecular Chaperones/genetics , Molecular Chaperones/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...