Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 384
Filter
1.
RNA Biol ; 21(1): 31-44, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38828710

ABSTRACT

Non-thermal plasma, a partially ionized gas, holds significant potential for clinical applications, including wound-healing support, oral therapies, and anti-tumour treatments. While its applications showed promising outcomes, the underlying molecular mechanisms remain incompletely understood. We thus apply non-thermal plasma to mouse auricular skin and conducted non-coding RNA sequencing, as well as single-cell blood sequencing. In a time-series analysis (five timepoints spanning 2 hours), we compare the expression of microRNAs in the plasma-treated left ears to the unexposed right ears of the same mice as well as to the ears of unexposed control mice. Our findings indicate specific effects in the treated ears for a set of five miRNAs: mmu-miR-144-5p, mmu-miR-144-3p, mmu-miR-142a-5p, mmu-miR-223-3p, and mmu-miR-451a. Interestingly, mmu-miR-223-3p also exhibits an increase over time in the right non-treated ear of the exposed mice, suggesting systemic effects. Notably, this miRNA, along with mmu-miR-142a-5p and mmu-miR-144-3p, regulates genes and pathways associated with wound healing and tissue regeneration (namely ErbB, FoxO, Hippo, and PI3K-Akt signalling). This co-regulation is particularly remarkable considering the significant seed dissimilarities among the miRNAs. Finally, single-cell sequencing of PBMCs reveals the downregulation of 12 from 15 target genes in B-cells, Cd4+ and Cd8+ T-cells. Collectively, our data provide evidence for a systemic effect of non-thermal plasma.


Subject(s)
Gene Expression Regulation , MicroRNAs , Plasma Gases , Skin , MicroRNAs/genetics , Animals , Mice , Skin/metabolism , Plasma Gases/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Profiling , Wound Healing/drug effects , Signal Transduction , Immune System/metabolism
2.
Nucleic Acids Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716863

ABSTRACT

Quantifying microbiome species and composition from metagenomic assays is often challenging due to its time-consuming nature and computational complexity. In Bioinformatics, k-mer-based approaches were long established to expedite the analysis of large sequencing data and are now widely used to annotate metagenomic data. We make use of k-mer counting techniques for efficient and accurate compositional analysis of microbiota from whole metagenome sequencing. Mibianto solves this problem by operating directly on read files, without manual preprocessing or complete data exchange. It handles diverse sequencing platforms, including short single-end, paired-end, and long read technologies. Our sketch-based workflow significantly reduces the data volume transferred from the user to the server (up to 99.59% size reduction) to subsequently perform taxonomic profiling with enhanced efficiency and privacy. Mibianto offers functionality beyond k-mer quantification; it supports advanced community composition estimation, including diversity, ordination, and differential abundance analysis. Our tool aids in the standardization of computational workflows, thus supporting reproducibility of scientific sequencing studies. It is adaptable to small- and large-scale experimental designs and offers a user-friendly interface, thus making it an invaluable tool for both clinical and research-oriented metagenomic studies. Mibianto is freely available without the need for a login at: https://www.ccb.uni-saarland.de/mibianto.

3.
Lancet Digit Health ; 6(6): e407-e417, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38789141

ABSTRACT

BACKGROUND: With increasing numbers of patients and novel drugs for distinct causes of systolic and diastolic heart failure, automated assessment of cardiac function is important. We aimed to provide a non-invasive method to predict diagnosis of patients undergoing cardiac MRI (cMRI) and to obtain left ventricular end-diastolic pressure (LVEDP). METHODS: For this modelling study, patients who had undergone cardiac catheterisation at University Hospital Heidelberg (Heidelberg, Germany) between July 15, 2004 and March 16, 2023, were identified, as were individual left ventricular pressure measurements. We used existing patient data from routine cardiac diagnostics. From this initial group, we extracted patients who had been diagnosed with ischaemic cardiomyopathy, dilated cardiomyopathy, hypertrophic cardiomyopathy, or amyloidosis, as well as control individuals with no structural phenotype. Data were pseudonymised and only processed within the university hospital's AI infrastructure. We used the data to build different models to predict either demographic (ie, AI-age and AI-sex), diagnostic (ie, AI-coronary artery disease and AI-cardiomyopathy [AI-CMP]), or functional parameters (ie, AI-LVEDP). We randomly divided our datasets via computer into training, validation, and test datasets. AI-CMP was not compared with other models, but was validated in a prospective setting. Benchmarking was also done. FINDINGS: 66 936 patients who had undergone cardiac catheterisation at University Hospital Heidelberg were identified, with more than 183 772 individual left ventricular pressure measurements. We extracted 4390 patients from this initial group, of whom 1131 (25·8%) had been diagnosed with ischaemic cardiomyopathy, 1064 (24·2%) had been diagnosed with dilated cardiomyopathy, 816 (18·6%) had been diagnosed with hypertrophic cardiomyopathy, 202 (4·6%) had been diagnosed with amyloidosis, and 1177 (26·7%) were control individuals with no structural phenotype. The core cohort only included patients with cardiac catherisation and cMRI within 30 days, and emergency cases were excluded. AI-sex was able to predict patient sex with areas under the receiver operating characteristic curves (AUCs) of 0·78 (95% CI 0·77-0·78) and AI-age was able to predict patient age with a mean absolute error of 7·86 years (7·77-7·95), with a Pearson correlation of 0·57 (95% CI 0·56-0·57). The AUCs for the classification tasks ranged between 0·82 (95% CI 0·79-0·84) for ischaemic cardiomyopathy and 0·92 (0·91-0·94) for hypertrophic cardiomyopathy. INTERPRETATION: Our AI models could be easily integrated into clinical practice and provide added value to the information content of cMRI, allowing for disease classification and prediction of diastolic function. FUNDING: Informatics for Life initiative of the Klaus-Tschira Foundation, German Center for Cardiovascular Research, eCardiology section of the German Cardiac Society, and AI Health Innovation Cluster Heidelberg.


Subject(s)
Magnetic Resonance Imaging , Humans , Male , Female , Middle Aged , Aged , Magnetic Resonance Imaging/methods , Artificial Intelligence , Germany , Ventricular Pressure/physiology , Cardiac Catheterization , Adult , Diastole , Ventricular Function, Left/physiology
4.
Hypertension ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660828

ABSTRACT

BACKGROUND: Quantification of total cardiovascular risk is essential for individualizing hypertension treatment. This study aimed to develop and validate a novel, machine-learning-derived model to predict cardiovascular mortality risk using office blood pressure (OBP) and ambulatory blood pressure (ABP). METHODS: The performance of the novel risk score was compared with existing risk scores, and the possibility of predicting ABP phenotypes utilizing clinical variables was assessed. Using data from 59 124 patients enrolled in the Spanish ABP Monitoring registry, machine-learning approaches (logistic regression, gradient-boosted decision trees, and deep neural networks) and stepwise forward feature selection were used. RESULTS: For the prediction of cardiovascular mortality, deep neural networks yielded the highest clinical performance. The novel mortality prediction models using OBP and ABP outperformed other risk scores. The area under the curve achieved by the novel approach, already when using OBP variables, was significantly higher when compared with the area under the curve of the Framingham risk score, Systemic Coronary Risk Estimation 2, and Atherosclerotic Cardiovascular Disease score. However, the prediction of cardiovascular mortality with ABP instead of OBP data significantly increased the area under the curve (0.870 versus 0.865; P=3.61×10-28), accuracy, and specificity, respectively. The prediction of ABP phenotypes (ie, white-coat, ambulatory, and masked hypertension) using clinical characteristics was limited. CONCLUSIONS: The receiver operating characteristic curves for cardiovascular mortality using ABP and OBP with deep neural network models outperformed all other risk metrics, indicating the potential for improving current risk scores by applying state-of-the-art machine learning approaches. The prediction of cardiovascular mortality using ABP data led to a significant increase in area under the curve and performance metrics.

5.
Nucleic Acids Res ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38572750

ABSTRACT

Single-cell RNA sequencing (RNA-seq) has revolutionized our understanding of cell biology, developmental and pathophysiological molecular processes, paving the way toward novel diagnostic and therapeutic approaches. However, most of the gene regulatory processes on the single-cell level are still unknown, including post-transcriptional control conferred by microRNAs (miRNAs). Like the established single-cell gene expression analysis, advanced computational expertise is required to comprehensively process newly emerging single-cell miRNA-seq datasets. A web server providing a workflow tailored for single-cell miRNA-seq data with a self-explanatory interface is currently not available. Here, we present SingmiR, enabling the rapid (pre-)processing and quantification of human miRNAs from noncoding single-cell samples. It performs read trimming for different library preparation protocols, generates automated quality control reports and provides feature-normalized count files. Numerous standard and advanced analyses such as dimension reduction, clustered feature heatmaps, sample correlation heatmaps and differential expression statistics are implemented. We aim to speed up the prototyping pipeline for biologists developing single-cell miRNA-seq protocols on small to medium-sized datasets. SingmiR is freely available to all users without the need for a login at https://www.ccb.uni-saarland.de/singmir.

6.
Proc Natl Acad Sci U S A ; 121(12): e2307250121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38483990

ABSTRACT

Myelination of neuronal axons is essential for nervous system development. Myelination requires dramatic cytoskeletal dynamics in oligodendrocytes, but how actin is regulated during myelination is poorly understood. We recently identified serum response factor (SRF)-a transcription factor known to regulate expression of actin and actin regulators in other cell types-as a critical driver of myelination in the aged brain. Yet, a major gap remains in understanding the mechanistic role of SRF in oligodendrocyte lineage cells. Here, we show that SRF is required cell autonomously in oligodendrocytes for myelination during development. Combining ChIP-seq with RNA-seq identifies SRF-target genes in oligodendrocyte precursor cells and oligodendrocytes that include actin and other key cytoskeletal genes. Accordingly, SRF knockout oligodendrocytes exhibit dramatically reduced actin filament levels early in differentiation, consistent with its role in actin-dependent myelin sheath initiation. Surprisingly, oligodendrocyte-restricted loss of SRF results in upregulation of gene signatures associated with aging and neurodegenerative diseases. Together, our findings identify SRF as a transcriptional regulator that controls the expression of cytoskeletal genes required in oligodendrocytes for myelination. This study identifies an essential pathway regulating oligodendrocyte biology with high relevance to brain development, aging, and disease.


Subject(s)
Actins , Serum Response Factor , Actins/genetics , Actins/metabolism , Serum Response Factor/genetics , Serum Response Factor/metabolism , Oligodendroglia/metabolism , Myelin Sheath/genetics , Myelin Sheath/metabolism , Cytoskeleton/genetics , Cell Differentiation/genetics
7.
Exp Mol Med ; 56(4): 935-945, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38556547

ABSTRACT

The identification of targetomes remains a challenge given the pleiotropic effect of miRNAs, the limited effects of miRNAs on individual targets, and the sheer number of estimated miRNA-target gene interactions (MTIs), which is around 44,571,700. Currently, targetome identification for single miRNAs relies on computational evidence and functional studies covering smaller numbers of targets. To ensure that the targetome analysis could be experimentally verified by functional assays, we employed a systematic approach and explored the targetomes of four miRNAs (miR-129-5p, miR-129-1-3p, miR-133b, and miR-873-5p) by analyzing 410 predicted target genes, both of which were previously associated with Parkinson's disease (PD). After performing 13,536 transfections, we validated 442 of the 705 putative MTIs (62,7%) through dual luciferase reporter assays. These analyses increased the number of validated MTIs by at least 2.1-fold for miR-133b and by a maximum of 24.3-fold for miR-873-5p. Our study contributes to the experimental capture of miRNA targetomes by addressing i) the ratio of experimentally verified MTIs to predicted MTIs, ii) the sizes of disease-related miRNA targetomes, and iii) the density of MTI networks. A web service to support the analyses on the MTI level is available online ( https://ccb-web.cs.uni-saarland.de/utr-seremato ), and all the data have been added to the miRATBase database ( https://ccb-web.cs.uni-saarland.de/miratbase ).


Subject(s)
3' Untranslated Regions , MicroRNAs , Parkinson Disease , MicroRNAs/genetics , Parkinson Disease/genetics , Parkinson Disease/metabolism , Humans , Gene Expression Regulation , Computational Biology/methods , Gene Regulatory Networks , Gene Library
8.
One Health Outlook ; 6(1): 4, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38549118

ABSTRACT

BACKGROUND: Different production systems of livestock animals influence various factors, including the gut microbiota. METHODS: We investigated whether changing the conditions from barns to free-range chicken farming impacts the microbiome over the course of three weeks. We compared the stool microbiota of chicken from industrial barns after introducing them either in community or separately to a free-range environment. RESULTS: Over the six time points, 12 taxa-mostly lactobacilli-changed significantly. As expected, the former barn chicken cohort carries more resistances to common antibiotics. These, however, remained positive over the observed period. At the end of the study, we collected eggs and compared metabolomic profiles of the egg white and yolk to profiles of eggs from commercial suppliers. Here, we observed significant differences between commercial and fresh collected eggs as well as differences between the former barn chicken and free-range chicken. CONCLUSION: Our data indicate that the gut microbiota can undergo alterations over time in response to changes in production systems. These changes subsequently exert an influence on the metabolites found in the eggs. The preliminary results of our proof-of-concept study motivate larger scale observations with more individual chicken and longer observation periods.

10.
Nat Biotechnol ; 42(1): 109-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37106037

ABSTRACT

Molecular mechanisms of organismal and cell aging remain incompletely understood. We, therefore, generated a body-wide map of noncoding RNA (ncRNA) expression in aging (16 organs at ten timepoints from 1 to 27 months) and rejuvenated mice. We found molecular aging trajectories are largely tissue-specific except for eight broadly deregulated microRNAs (miRNAs). Their individual abundance mirrors their presence in circulating plasma and extracellular vesicles (EVs) whereas tissue-specific ncRNAs were less present. For miR-29c-3p, we observe the largest correlation with aging in solid organs, plasma and EVs. In mice rejuvenated by heterochronic parabiosis, miR-29c-3p was the most prominent miRNA restored to similar levels found in young liver. miR-29c-3p targets the extracellular matrix and secretion pathways, known to be implicated in aging. We provide a map of organism-wide expression of ncRNAs with aging and rejuvenation and identify a set of broadly deregulated miRNAs, which may function as systemic regulators of aging via plasma and EVs.


Subject(s)
MicroRNAs , Mice , Animals , MicroRNAs/metabolism , Aging/genetics , Liver/metabolism , Parabiosis
11.
Nucleic Acids Res ; 52(D1): D1089-D1096, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37941147

ABSTRACT

The molecular causes and mechanisms of neurodegenerative diseases remain poorly understood. A growing number of single-cell studies have implicated various neural, glial, and immune cell subtypes to affect the mammalian central nervous system in many age-related disorders. Integrating this body of transcriptomic evidence into a comprehensive and reproducible framework poses several computational challenges. Here, we introduce ZEBRA, a large single-cell and single-nucleus RNA-seq database. ZEBRA integrates and normalizes gene expression and metadata from 33 studies, encompassing 4.2 million human and mouse brain cells sampled from 39 brain regions. It incorporates samples from patients with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, and Multiple sclerosis, as well as samples from relevant mouse models. We employed scVI, a deep probabilistic auto-encoder model, to integrate the samples and curated both cell and sample metadata for downstream analysis. ZEBRA allows for cell-type and disease-specific markers to be explored and compared between sample conditions and brain regions, a cell composition analysis, and gene-wise feature mappings. Our comprehensive molecular database facilitates the generation of data-driven hypotheses, enhancing our understanding of mammalian brain function during aging and disease. The data sets, along with an interactive database are freely available at https://www.ccb.uni-saarland.de/zebra.


Subject(s)
Neurodegenerative Diseases , Single-Cell Analysis , Animals , Humans , Mice , Alzheimer Disease/metabolism , Brain/metabolism , Neurodegenerative Diseases/genetics , Parkinson Disease/metabolism , Transcriptome , Gene Expression
12.
Nucleic Acids Res ; 52(4): 1544-1557, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38033323

ABSTRACT

MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.


Subject(s)
Gene Expression Regulation , MicroRNAs , Animals , Humans , Binding Sites , Mammals/genetics , MicroRNAs/metabolism
13.
Nucleic Acids Res ; 52(D1): D579-D585, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37994699

ABSTRACT

The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of 19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely accessible at https://www.ccb.uni-saarland.de/abc_humi/.


Subject(s)
Biosynthetic Pathways , Databases, Genetic , Microbiota , Multigene Family , Humans , Biosynthetic Pathways/genetics , Computational Biology/instrumentation , Internet , Microbiota/genetics , Multigene Family/genetics , Metagenome/genetics
14.
Nat Commun ; 14(1): 4729, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550295

ABSTRACT

Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.


Subject(s)
CRISPR-Cas Systems , Craniocerebral Trauma , Humans , Mice , Animals , Wound Healing/genetics , Genes, myc , Gene Editing , Dendritic Cells
15.
Cell ; 186(19): 4117-4133.e22, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37591239

ABSTRACT

Aging is the key risk factor for cognitive decline, yet the molecular changes underlying brain aging remain poorly understood. Here, we conducted spatiotemporal RNA sequencing of the mouse brain, profiling 1,076 samples from 15 regions across 7 ages and 2 rejuvenation interventions. Our analysis identified a brain-wide gene signature of aging in glial cells, which exhibited spatially defined changes in magnitude. By integrating spatial and single-nucleus transcriptomics, we found that glial aging was particularly accelerated in white matter compared with cortical regions, whereas specialized neuronal populations showed region-specific expression changes. Rejuvenation interventions, including young plasma injection and dietary restriction, exhibited distinct effects on gene expression in specific brain regions. Furthermore, we discovered differential gene expression patterns associated with three human neurodegenerative diseases, highlighting the importance of regional aging as a potential modulator of disease. Our findings identify molecular foci of brain aging, providing a foundation to target age-related cognitive decline.


Subject(s)
Aging , Cognitive Dysfunction , White Matter , Animals , Humans , Mice , Cognitive Dysfunction/genetics , Gene Expression Profiling , Solitary Nucleus , White Matter/pathology , Single-Cell Gene Expression Analysis , Brain/pathology
16.
RNA Biol ; 20(1): 482-494, 2023 01.
Article in English | MEDLINE | ID: mdl-37498213

ABSTRACT

Previous work on murine models and humans demonstrated global as well as tissue-specific molecular ageing trajectories of RNAs. Extracellular vesicles (EVs) are membrane vesicles mediating the horizontal transfer of genetic information between different tissues. We sequenced small regulatory RNAs (sncRNAs) in two mouse plasma fractions at five time points across the lifespan from 2-18 months: (1) sncRNAs that are free-circulating (fc-RNA) and (2) sncRNAs bound outside or inside EVs (EV-RNA). Different sncRNA classes exhibit unique ageing patterns that vary between the fcRNA and EV-RNA fractions. While tRNAs showed the highest correlation with ageing in both fractions, rRNAs exhibited inverse correlation trajectories between the EV- and fc-fractions. For miRNAs, the EV-RNA fraction was exceptionally strongly associated with ageing, especially the miR-29 family in adipose tissues. Sequencing of sncRNAs and coding genes in fat tissue of an independent cohort of aged mice up to 27 months highlighted the pivotal role of miR-29a-3p and miR-29b-3p in ageing-related gene regulation that we validated in a third cohort by RT-qPCR.


Subject(s)
Extracellular Vesicles , MicroRNAs , RNA, Small Untranslated , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Extracellular Vesicles/metabolism , RNA, Small Untranslated/genetics , RNA, Small Untranslated/metabolism , RNA, Transfer/metabolism , Aging/genetics
17.
Eur J Immunol ; 53(10): e2250270, 2023 10.
Article in English | MEDLINE | ID: mdl-37366299

ABSTRACT

Mucosal barrier integrity and pathogen clearance is a complex process influenced by both Th17 and Treg cells. Previously, we had described the DNA methylation profile of Th17 cells and identified Zinc finger protein (Zfp)362 to be uniquely demethylated. Here, we generated Zfp362-/- mice to unravel the role of Zfp362 for Th17 cell biology. Zfp362-/- mice appeared clinically normal, showed no phenotypic alterations in the T-cell compartment, and upon colonization with segmented filamentous bacteria, no effect of Zfp362 deficiency on Th17 cell differentiation was observed. By contrast, Zfp362 deletion resulted in increased frequencies of colonic Foxp3+ Treg cells and IL-10+ and RORγt+ Treg cell subsets in mesenteric lymph nodes. Adoptive transfer of naïve CD4+ T cells from Zfp362-/- mice into Rag2-/- mice resulted in a significantly lower weight loss when compared with controls receiving cells from Zfp362+/+ littermates. However, this attenuated weight loss did not correlate with alterations of Th17 cells but instead was associated with an increase of effector Treg cells in mesenteric lymph nodes. Together, these results suggest that Zfp362 plays an important role in promoting colonic inflammation; however, this function is derived from constraining the effector function of Treg cells rather than directly promoting Th17 cell differentiation.


Subject(s)
T-Lymphocytes, Regulatory , Th17 Cells , Mice , Animals , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/metabolism , Cell Differentiation , Inflammation/metabolism , Weight Loss , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism
18.
Nucleic Acids Res ; 51(W1): W319-W325, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37177999

ABSTRACT

MicroRNAs (miRNAs) are small non-coding RNAs that play a critical role in regulating diverse biological processes. Extracting functional insights from a list of miRNAs is challenging, as each miRNA can potentially interact with hundreds of genes. To address this challenge, we developed miEAA, a flexible and comprehensive miRNA enrichment analysis tool based on direct and indirect miRNA annotation. The latest release of miEAA includes a data warehouse of 19 miRNA repositories, covering 10 different organisms and 139 399 functional categories. We have added information on the cellular context of miRNAs, isomiRs, and high-confidence miRNAs to improve the accuracy of the results. We have also improved the representation of aggregated results, including interactive Upset plots to aid users in understanding the interaction among enriched terms or categories. Finally, we demonstrate the functionality of miEAA in the context of ageing and highlight the importance of carefully considering the miRNA input list. MiEAA is free to use and publicly available at https://www.ccb.uni-saarland.de/mieaa/.


Subject(s)
MicroRNAs , Software , MicroRNAs/genetics , Databases, Nucleic Acid
19.
Int J Infect Dis ; 132: 89-92, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37072055

ABSTRACT

We analyzed consecutive clinical cases of infections due to carbapenemase-producing gram-negative bacteria detected in war-wounded patients from Ukraine who were treated at one university medical center in southwest Germany between June and December 2022. The isolates of multiresistant gram-negative bacteria were subjected to a thorough microbiological characterization and whole genome sequencing (WGS). We identified five war-wounded Ukrainian patients who developed infections with New Delhi metallo-ß-lactamase 1-positive Klebsiella pneumoniae. Two isolates also carried OXA-48 carbapenemases. The bacteria were resistant to novel antibiotics, such as ceftazidime/avibactam and cefiderocol. The used treatment strategies included combinations of ceftazidime/avibactam + aztreonam, colistin, or tigecycline. WGS suggested transmission during primary care in Ukraine. We conclude that there is an urgent need for thorough surveillance of multiresistant pathogens in patients from war zones.


Subject(s)
Ceftazidime , Refugees , Humans , Ceftazidime/therapeutic use , Ukraine/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , beta-Lactamases/genetics , Bacterial Proteins/genetics , Azabicyclo Compounds/therapeutic use , Drug Combinations , Gram-Negative Bacteria/genetics , Microbial Sensitivity Tests , Klebsiella pneumoniae/genetics
20.
Mol Med ; 29(1): 43, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013480

ABSTRACT

BACKGROUND: Although a pivotal role of microRNA (miRNA, miR) in the pathogenesis of Huntington's disease (HD) is increasingly recognized, the molecular functions of miRNAs in the pathomechanisms of HD await further elucidation. One of the miRNAs that have been associated with HD is miR-34a-5p, which was deregulated in the mouse R6/2 model and in human HD brain tissues. METHODS: The aim of our study was to demonstrate interactions between miR-34a-5p and HD associated genes. By computational means we predicted 12 801 potential target genes of miR-34a-5p. An in-silico pathway analysis revealed 22 potential miR-34a-5p target genes in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway "Huntington's disease". RESULTS: Using our high-throughput miRNA interaction reporter assay (HiTmIR) we identified NDUFA9, TAF4B, NRF1, POLR2J2, DNALI1, HIP1, TGM2 and POLR2G as direct miR-34a-5p target genes. Direct binding of miR-34a-5p to target sites in the 3'UTRs of TAF4B, NDUFA9, HIP1 and NRF1 was verified by a mutagenesis HiTmIR assay and by determining endogenous protein levels for HIP1 and NDUFA9. STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) analysis identified protein-protein interaction networks associated with HD like "Glutamine Receptor Signaling Pathway" and "Calcium Ion Transmembrane Import Into Cytosol". CONCLUSION: Our study demonstrates multiple interactions between miR-34a-5p and HD associated target genes and thereby lays the ground for future therapeutic interventions using this miRNA.


Subject(s)
Huntington Disease , MicroRNAs , Mice , Animals , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Disease Models, Animal , Protein Interaction Maps , Huntington Disease/genetics , Huntington Disease/metabolism , Huntington Disease/pathology , Gene Expression Profiling
SELECTION OF CITATIONS
SEARCH DETAIL
...