Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Med Biol Eng Comput ; 51(10): 1105-19, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23864549

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia, and the total number of AF patients is constantly increasing. The mechanisms leading to and sustaining AF are not completely understood yet. Heterogeneities in atrial electrophysiology seem to play an important role in this context. Although some heterogeneities have been used in in-silico human atrial modeling studies, they have not been thoroughly investigated. In this study, the original electrophysiological (EP) models of Courtemanche et al., Nygren et al. and Maleckar et al. were adjusted to reproduce action potentials in 13 atrial regions. The parameter sets were validated against experimental action potential duration data and ECG data from patients with AV block. The use of the heterogeneous EP model led to a more synchronized repolarization sequence in a variety of 3D atrial anatomical models. Combination of the heterogeneous EP model with a model of persistent AF-remodeled electrophysiology led to a drastic change in cell electrophysiology. Simulated Ta-waves were significantly shorter under the remodeling. The heterogeneities in cell electrophysiology explain the previously observed Ta-wave effects. The results mark an important step toward the reliable simulation of the atrial repolarization sequence, give a deeper understanding of the mechanism of atrial repolarization and enable further clinical investigations.


Subject(s)
Atrial Fibrillation/physiopathology , Atrial Function/physiology , Heart/physiopathology , Models, Cardiovascular , Action Potentials/physiology , Adult , Body Surface Potential Mapping , Computer Simulation , Electrocardiography , Female , Heart Atria/physiopathology , Humans , Male , Middle Aged , Reproducibility of Results , Thorax/anatomy & histology , Thorax/physiology
2.
IEEE Trans Biomed Eng ; 59(2): 311-22, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21926009

ABSTRACT

Despite the commonly accepted notion that action potential duration (APD) is distributed heterogeneously throughout the ventricles and that the associated dispersion of repolarization is mainly responsible for the shape of the T-wave, its concordance and exact morphology are still not completely understood. This paper evaluated the T-waves for different previously measured heterogeneous ion channel distributions. To this end, cardiac activation and repolarization was simulated on a high resolution and anisotropic biventricular model of a volunteer. From the same volunteer, multichannel ECG data were obtained. Resulting transmembrane voltage distributions for the previously measured heterogeneous ion channel expressions were used to calculate the ECG and the simulated T-wave was compared to the measured ECG for quantitative evaluation. Both exclusively transmural (TM) and exclusively apico-basal (AB) setups produced concordant T-waves, whereas interventricular (IV) heterogeneities led to notched T-wave morphologies. The best match with the measured T-wave was achieved for a purely AB setup with shorter apical APD and a mix of AB and TM heterogeneity with M-cells in midmyocardial position and shorter apical APD. Finally, we probed two configurations in which the APD was negatively correlated with the activation time. In one case, this meant that the repolarization directly followed the sequence of activation. Still, the associated T-waves were concordant albeit of low amplitude.


Subject(s)
Electrocardiography/methods , Heart Conduction System/physiology , Models, Cardiovascular , Signal Processing, Computer-Assisted , Animals , Computer Simulation , Dogs , Guinea Pigs , Heart/anatomy & histology , Heart/physiology , Humans , Image Processing, Computer-Assisted , Rabbits , Swine
3.
IEEE Trans Biomed Eng ; 58(7): 2109-19, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21536516

ABSTRACT

Ventricular wall deformation is widely assumed to have an impact on the morphology of the T-wave that can be measured on the body surface. This study aims at quantifying these effects based on an in silico approach. To this end, we used a hybrid, static-dynamic approach: action potential propagation and repolarization were simulated on an electrophysiologically detailed but static 3-D heart model while the forward calculation accounted for ventricular deformation and the associated movement of the electrical sources (thus, it was dynamic). The displacement vectors that describe the ventricular motion were extracted from cinematographic and tagged MRI data using an elastic registration procedure. To probe to what extent the T-wave changes depend on the synchrony/asynchrony of mechanical relaxation and electrical repolarization, we created three electrophysiological configurations, each with a unique QT time: a setup with physiological QT time, a setup with pathologically short QT time (SQT), and pathologically long QT time (LQT), respectively. For all three electrophysiological configurations, a reduction of the T-wave amplitude was observed when the dynamic model was used for the forward calculations. The largest amplitude changes and the lowest correlation coefficients between the static and dynamic model were observed for the SQT setup, followed by the physiological QT and LQT setups.


Subject(s)
Electrocardiography/methods , Heart Ventricles/anatomy & histology , Models, Cardiovascular , Ventricular Function/physiology , Wavelet Analysis , Adult , Computer Simulation , Humans , Magnetic Resonance Imaging, Cine
4.
IEEE Trans Biomed Eng ; 58(2): 265-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21041150

ABSTRACT

In this paper, we present an efficient method to estimate changes in forward-calculated body surface potential maps (BSPMs) caused by variations in tissue conductivities. For blood, skeletal muscle, lungs, and fat, the influence of conductivity variations was analyzed using the principal component analysis (PCA). For each single tissue, we obtained the first PCA eigenvector from seven sample simulations with conductivities between ±75% of the default value. We showed that this eigenvector was sufficient to estimate the signal over the whole conductivity range of ±75%. By aligning the origins of the different PCA coordinate systems and superimposing the single tissue effects, it was possible to estimate the BSPM for combined conductivity variations in all four tissues. Furthermore, the method can be used to easily calculate confidence intervals for the signal, i.e., the minimal and maximal possible amplitudes for given conductivity uncertainties. In addition to that, it was possible to determine the most probable conductivity values for a given BSPM signal. This was achieved by probing hundreds of different conductivity combinations with a numerical optimization scheme. In conclusion, our method allows to efficiently predict forward-calculated BSPMs over a wide range of conductivity values from few sample simulations.


Subject(s)
Algorithms , Body Surface Potential Mapping/methods , Models, Biological , Principal Component Analysis/methods , Electric Conductivity , Humans , Male , Reproducibility of Results , Signal Processing, Computer-Assisted , Visible Human Projects
5.
IEEE Trans Biomed Eng ; 57(7): 1568-76, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20659824

ABSTRACT

This paper examined the effects that different tissue conductivities had on forward-calculated ECGs. To this end, we ranked the influence of tissues by performing repetitive forward calculations while varying the respective tissue conductivity. The torso model included all major anatomical structures like blood, lungs, fat, anisotropic skeletal muscle, intestine, liver, kidneys, bone, cartilage, and spleen. Cardiac electrical sources were derived from realistic atrial and ventricular simulations. The conductivity rankings were based on one of two methods: First, we considered fixed percental conductivity changes to probe the sensitivity of the ECG regarding conductivity alterations. Second, we set conductivities to the reported minimum and maximum values to evaluate the effects of the existing conductivity uncertainties. The amplitudes of both atrial and ventricular ECGs were most sensitive for blood, skeletal muscle conductivity and anisotropy as well as for heart, fat, and lungs. If signal morphology was considered, fat was more important whereas skeletal muscle was less important. When comparing atria and ventricles, the lungs had a larger effect on the atria yet the heart conductivity had a stronger impact on the ventricles. The effects of conductivity uncertainties were significant. Future studies dealing with electrocardiographic simulations should consider these effects.


Subject(s)
Electric Conductivity , Electrocardiography/methods , Models, Biological , Organ Specificity , Databases, Factual , Finite Element Analysis , Heart/physiology , Humans , Lung/physiology , Male , Muscle, Skeletal/physiology , Thorax/physiology , Visible Human Projects
6.
Article in English | MEDLINE | ID: mdl-19964262

ABSTRACT

High performance computing is required to make feasible simulations of whole organ models of the heart with biophysically detailed cellular models in a clinical setting. Increasing model detail by simulating electrophysiology and mechanical models increases computation demands. We present scaling results of an electro - mechanical cardiac model of two ventricles and compare them to our previously published results using an electrophysiological model only. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Fiber orientation was included. Data decomposition for the distribution onto the distributed memory system was carried out by orthogonal recursive bisection. Load weight ratios for non-tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100. The ten Tusscher et al. (2004) electrophysiological cell model was used and the Rice et al. (1999) model for the computation of the calcium transient dependent force. Scaling results for 512, 1024, 2048, 4096, 8192 and 16,384 processors were obtained for 1 ms simulation time. The simulations were carried out on an IBM Blue Gene/L supercomputer. The results show linear scaling from 512 to 16,384 processors with speedup factors between 1.82 and 2.14 between partitions. The most optimal load ratio was 1:25 for on all partitions. However, a shift towards load ratios with higher weight for the tissue elements can be recognized as can be expected when adding computational complexity to the model while keeping the same communication setup. This work demonstrates that it is potentially possible to run simulations of 0.5 s using the presented electro-mechanical cardiac model within 1.5 hours.


Subject(s)
Biomedical Engineering/methods , Computer Simulation , Electrophysiology/methods , Models, Cardiovascular , Computing Methodologies , Female , Heart/physiology , Heart Conduction System , Humans , Models, Anatomic , Models, Neurological , Myocardial Contraction , Neural Networks, Computer , Stress, Mechanical , United States , Visible Human Projects
7.
Article in English | MEDLINE | ID: mdl-19964263

ABSTRACT

Orthogonal recursive bisection (ORB) algorithm can be used as data decomposition strategy to distribute a large data set of a cardiac model to a distributed memory supercomputer. It has been shown previously that good scaling results can be achieved using the ORB algorithm for data decomposition. However, the ORB algorithm depends on the distribution of computational load of each element in the data set. In this work we investigated the dependence of data decomposition and load balancing on different rotations of the anatomical data set to achieve optimization in load balancing. The anatomical data set was given by both ventricles of the Visible Female data set in a 0.2 mm resolution. Fiber orientation was included. The data set was rotated by 90 degrees around x, y and z axis, respectively. By either translating or by simply taking the magnitude of the resulting negative coordinates we were able to create 14 data set of the same anatomy with different orientation and position in the overall volume. Computation load ratios for non - tissue vs. tissue elements used in the data decomposition were 1:1, 1:2, 1:5, 1:10, 1:25, 1:38.85, 1:50 and 1:100 to investigate the effect of different load ratios on the data decomposition. The ten Tusscher et al. (2004) electrophysiological cell model was used in monodomain simulations of 1 ms simulation time to compare performance using the different data sets and orientations. The simulations were carried out for load ratio 1:10, 1:25 and 1:38.85 on a 512 processor partition of the IBM Blue Gene/L supercomputer. Th results show that the data decomposition does depend on the orientation and position of the anatomy in the global volume. The difference in total run time between the data sets is 10 s for a simulation time of 1 ms. This yields a difference of about 28 h for a simulation of 10 s simulation time. However, given larger processor partitions, the difference in run time decreases and becomes less significant. Depending on the processor partition size, future work will have to consider the orientation of the anatomy in the global volume for longer simulation runs.


Subject(s)
Computing Methodologies , Heart Conduction System/physiology , Models, Cardiovascular , Algorithms , Computer Simulation , Computers , Electrophysiology/methods , Heart/physiology , Humans , Image Processing, Computer-Assisted , Models, Anatomic , Models, Theoretical , Myocardial Contraction , Software , United States , Visible Human Projects
8.
Article in English | MEDLINE | ID: mdl-19162721

ABSTRACT

Multi-scale, multi-physical heart models have not yet been able to include a high degree of accuracy and resolution with respect to model detail and spatial resolution due to computational limitations of current systems. We propose a framework to compute large scale cardiac models. Decomposition of anatomical data in segments to be distributed on a parallel computer is carried out by optimal recursive bisection (ORB). The algorithm takes into account a computational load parameter which has to be adjusted according to the cell models used. The diffusion term is realized by the monodomain equations. The anatomical data-set was given by both ventricles of the Visible Female data-set in a 0.2 mm resolution. Heterogeneous anisotropy was included in the computation. Model weights as input for the decomposition and load balancing were set to (a) 1 for tissue and 0 for non-tissue elements; (b) 10 for tissue and 1 for non-tissue elements. Scaling results for 512, 1024, 2048, 4096 and 8192 computational nodes were obtained for 10 ms simulation time. The simulations were carried out on an IBM Blue Gene/L parallel computer. A 1 s simulation was then carried out on 2048 nodes for the optimal model load. Load balances did not differ significantly across computational nodes even if the number of data elements distributed to each node differed greatly. Since the ORB algorithm did not take into account computational load due to communication cycles, the speedup is close to optimal for the computation time but not optimal overall due to the communication overhead. However, the simulation times were reduced form 87 minutes on 512 to 11 minutes on 8192 nodes. This work demonstrates that it is possible to run simulations of the presented detailed cardiac model within hours for the simulation of a heart beat.


Subject(s)
Computing Methodologies , Heart Conduction System/physiology , Heart Rate/physiology , Models, Cardiovascular , Myocardial Contraction/physiology , Computer Simulation , Humans
9.
Europace ; 9 Suppl 6: vi96-104, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17959700

ABSTRACT

AIMS: This computational study examined the influence of fibre orientation on the electrical processes in the heart. In contrast to similar previous studies, human diffusion tensor magnetic resonance imaging measurements were used. METHODS: The fibre orientation was extracted from distinctive regions of the left ventricle. It was incorporated in a single tissue segment having a fixed geometry. The electrophysiological model applied in the computational units considered transmural heterogeneities. Excitation was computed by means of the monodomain model; the accompanying pseudo-electrocardiograms (ECGs) were calculated. RESULTS: The distribution of fibre orientation extracted from the same transversal section showed only small variations. The fibre information extracted from the equal circumferential but different longitudinal positions showed larger differences, mainly in the imbrication angle. Differences of the endocardial myocyte orientation mainly affected the beginning of the activation sequence. The transmural propagation was faster in areas with larger imbrication angles leading to a narrower QRS complex in pseudo-ECGs. CONCLUSION: The model can be expanded to simulate electrophysiology and contraction in the whole heart geometry. Embedded in a torso model, the impact of fibre orientation on body surface ECGs and their relation to local pseudo-ECGs can be identified.


Subject(s)
Heart Conduction System/physiopathology , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Muscle Fibers, Skeletal/pathology , Action Potentials/physiology , Anisotropy , Diffusion Magnetic Resonance Imaging , Electric Conductivity , Electrocardiography , Humans , Models, Cardiovascular , Neural Conduction/physiology
10.
Article in English | MEDLINE | ID: mdl-18002229

ABSTRACT

The congenital long-QT syndrome is commonly associated with a high risk for polymorphic ventricular tachy-cardia and sudden cardiac death. This is probably due to an intensification of the intrinsic heterogeneities present in ventricular myocardium. Increasing the electrophysiological heterogeneities amplifies the dispersion of repolarization which directly affects the morphology of the T wave in the ECG. The aim of this work is to investigate the effects of LQT2, a specific subtype of the long-QT syndrome (LQTS), on the Body Surface Potential Maps (BSPM) and the ECG. In this context a three-dimensional, heterogeneous model of the human ventricles is used to simulate both physiological and pathological excitation propagation. The results are used as input for the forward calculation of the BSPM and ECG. Characteristic QT prolongation is simulated correctly. The main goal of this study is to prepare and evaluate a simulation environment that can be used prospectivley to find features in the ECG or the BSPM that are characteristic for the LQTS. Such features might be used to facilitate the identification of LQTS patients.


Subject(s)
Body Surface Potential Mapping/methods , Electrocardiography/methods , Heart Conduction System/physiopathology , Long QT Syndrome/congenital , Long QT Syndrome/physiopathology , Models, Cardiovascular , Visible Human Projects , Computer Simulation , Humans , Long QT Syndrome/genetics , Models, Anatomic
SELECTION OF CITATIONS
SEARCH DETAIL
...