Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Int Conf Robot Autom ; 2023: 10464-10470, 2023.
Article in English | MEDLINE | ID: mdl-37576784

ABSTRACT

Many powered prosthetic devices use load cells to detect ground interaction forces and gait events. These sensors introduce additional weight and cost in the device. Recent proprioceptive actuators enable an algebraic relationship between actuator torques and ground contact forces. This paper presents a proprioceptive force sensing paradigm which estimates ground reaction forces as a solution to detect gait events without a load cell. A floating body dynamic model is obtained with constraints at the center of pressure representing foot-ground interaction. Constraint forces are derived to estimate ground reaction forces and subsequently timing of gait events. A treadmill experiment is conducted with a powered knee-ankle prosthesis used by an able-bodied subject walking at various speeds and slopes. Results show accurate gait event timing, with pooled data showing heel strike detection lagging by only 6.7 ± 7.2 ms and toe off detection leading by 30.4 ± 11.0 ms compared to values obtained from the load cell. These results establish proof of concept for predicting gait events without a load cell in powered prostheses with proprioceptive actuators.

2.
Sci Rep ; 11(1): 20595, 2021 10 18.
Article in English | MEDLINE | ID: mdl-34663881

ABSTRACT

The delivery of safe, visible wavelengths of light can be an effective, pathogen-agnostic, countermeasure that would expand the current portfolio of SARS-CoV-2 intervention strategies beyond the conventional approaches of vaccine, antibody, and antiviral therapeutics. Employing custom biological light units, that incorporate optically engineered light-emitting diode (LED) arrays, we harnessed monochromatic wavelengths of light for uniform delivery across biological surfaces. We demonstrated that primary 3D human tracheal/bronchial-derived epithelial tissues tolerated high doses of a narrow spectral band of visible light centered at a peak wavelength of 425 nm. We extended these studies to Vero E6 cells to understand how light may influence the viability of a mammalian cell line conventionally used for assaying SARS-CoV-2. The exposure of single-cell monolayers of Vero E6 cells to similar doses of 425 nm blue light resulted in viabilities that were dependent on dose and cell density. Doses of 425 nm blue light that are well-tolerated by Vero E6 cells also inhibited infection and replication of cell-associated SARS-CoV-2 by > 99% 24 h post-infection after a single five-minute light exposure. Moreover, the 425 nm blue light inactivated cell-free betacoronaviruses including SARS-CoV-1, MERS-CoV, and SARS-CoV-2 up to 99.99% in a dose-dependent manner. Importantly, clinically applicable doses of 425 nm blue light dramatically inhibited SARS-CoV-2 infection and replication in primary human 3D tracheal/bronchial tissue. Safe doses of visible light should be considered part of the strategic portfolio for the development of SARS-CoV-2 therapeutic countermeasures to mitigate coronavirus disease 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , COVID-19/prevention & control , Light , SARS-CoV-2 , Trachea/radiation effects , Virus Replication/radiation effects , Adult , Animals , Antiviral Agents/pharmacology , Bronchi , Calibration , Cell-Free System , Chlorocebus aethiops , Epithelium/pathology , Female , Humans , Respiratory Mucosa/radiation effects , Trachea/virology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...