Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Infect Genet Evol ; 74: 103998, 2019 10.
Article in English | MEDLINE | ID: mdl-31401306

ABSTRACT

Chagas disease, a neglected tropical disease endemic in Latin America, is caused by the protozoan parasite Trypanosoma cruzi and is responsible for significant health impacts, especially in rural communities. The parasite is transmitted by insect vectors in the Triatominae subfamily and due to lack of vaccines and limited treatment options, vector control is the main way of controlling the disease. Knowing what vectors are feeding on directly enhances our understanding of the ecology and biology of the different vector species and can potentially aid in engaging communities in active disease control, a concept known as Ecohealth management. We evaluated bloodmeals in rural community, house-caught insect vectors previously evaluated for bloodmeals via DNA analysis as part of a larger collaborative project from three countries in Central America, including Guatemala. In addition to identifying bloodmeals in 100% of all samples using liquid chromatography tandem mass spectrometry (LC-MS/MS) (n = 50), strikingly for 53% of these samples there was no evidence of a recent bloodmeal by DNA-PCR. As individual vectors often feed on multiple sources, we developed an enhanced detection pipeline, and showed the ability to quantify a bloodmeal using stable-isotope-containing synthetic references peptides, a first step in further exploration of species-specific bloodmeal composition. Furthermore, we show that a lower resolution mass spectrometer is sufficient to correctly identify taxa from bloodmeals, an important and strong attribute of our LC-MS/MS-based method, opening the door to using proteomics in countries where Chagas disease is endemic.


Subject(s)
Animal Feed/analysis , Chagas Disease/transmission , DNA/analysis , Proteomics/methods , Triatoma/pathogenicity , Trypanosoma cruzi/pathogenicity , Animals , Central America , Chromatography, Liquid , Female , Humans , Insect Proteins/metabolism , Insect Vectors/metabolism , Insect Vectors/parasitology , Male , Rural Population , Species Specificity , Tandem Mass Spectrometry , Triatoma/genetics , Triatoma/metabolism , Triatoma/parasitology
2.
Mem Inst Oswaldo Cruz ; 113(10): e180160, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30277492

ABSTRACT

BACKGROUND: Chagas disease is highly prevalent in Latin America, and vector control is the most effective control strategy to date. We have previously shown that liquid chromatography tandem mass spectrometry (LC-MS/MS) is a valuable tool for identifying triatomine vector blood meals. OBJECTIVES: The purpose of this study was to determine blood meal detection ability as a function of method [polymerase chain reaction (PCR) vs. LC-MS/MS], time since feeding, and the effect of molting in mouse-fed triatomine insect vectors targeting hemoglobin and albumin proteins with LC-MS/MS and short interspersed nuclear elements (SINE)-based PCR. METHODS: We experimentally fed Triatoma protracta on mice and used LC-MS/MS to detect hemoglobin and albumin peptides over time post-feeding and post-molting (≤ 12 weeks). We compared LC-MS/MS results with those of a standard PCR method based on SINEs. FINDINGS: Hemoglobin-based LC-MS/MS detected blood meals most robustly at all time points post-feeding. Post-molting, no blood meals were detected with PCR, whereas LC-MS/MS detected mouse hemoglobin and albumin up to 12 weeks. MAIN CONCLUSIONS: In our study, the hemoglobin signature in the insect abdomen lasted longer than that of albumin and DNA. LC-MS/MS using hemoglobin shows promise for identifying triatomine blood meals over long temporal scales and even post-molting. Clarifying the frequency of blood-feeding on different hosts can foster our understanding of vector behavior and may help devise sounder disease-control strategies, including Ecohealth (community based ecosystem management) approaches.


Subject(s)
Albumins/analysis , Feeding Behavior/physiology , Hemoglobins/analysis , Insect Vectors/physiology , Meals , Triatoma/physiology , Animals , Blood , Chagas Disease/transmission , Gas Chromatography-Mass Spectrometry , Mice , Molting , Polymerase Chain Reaction , Time Factors
3.
Mem. Inst. Oswaldo Cruz ; 113(10): e180160, 2018. tab, graf
Article in English | LILACS | ID: biblio-955106

ABSTRACT

BACKGROUND Chagas disease is highly prevalent in Latin America, and vector control is the most effective control strategy to date. We have previously shown that liquid chromatography tandem mass spectrometry (LC-MS/MS) is a valuable tool for identifying triatomine vector blood meals. OBJECTIVES The purpose of this study was to determine blood meal detection ability as a function of method [polymerase chain reaction (PCR) vs. LC-MS/MS], time since feeding, and the effect of molting in mouse-fed triatomine insect vectors targeting hemoglobin and albumin proteins with LC-MS/MS and short interspersed nuclear elements (SINE)-based PCR. METHODS We experimentally fed Triatoma protracta on mice and used LC-MS/MS to detect hemoglobin and albumin peptides over time post-feeding and post-molting (≤ 12 weeks). We compared LC-MS/MS results with those of a standard PCR method based on SINEs. FINDINGS Hemoglobin-based LC-MS/MS detected blood meals most robustly at all time points post-feeding. Post-molting, no blood meals were detected with PCR, whereas LC-MS/MS detected mouse hemoglobin and albumin up to 12 weeks. MAIN CONCLUSIONS In our study, the hemoglobin signature in the insect abdomen lasted longer than that of albumin and DNA. LC-MS/MS using hemoglobin shows promise for identifying triatomine blood meals over long temporal scales and even post-molting. Clarifying the frequency of blood-feeding on different hosts can foster our understanding of vector behavior and may help devise sounder disease-control strategies, including Ecohealth (community based ecosystem management) approaches.


Subject(s)
Humans , Chagas Disease/therapy , Chagas Disease/epidemiology , Hemoglobins , Serum Albumin
4.
PLoS One ; 12(12): e0189647, 2017.
Article in English | MEDLINE | ID: mdl-29232402

ABSTRACT

Chagas disease is a complex vector borne parasitic disease involving blood feeding Triatominae (Hemiptera: Reduviidae) insects, also known as kissing bugs, and the vertebrates they feed on. This disease has tremendous impacts on millions of people and is a global health problem. The etiological agent of Chagas disease, Trypanosoma cruzi (Kinetoplastea: Trypanosomatida: Trypanosomatidae), is deposited on the mammalian host in the insect's feces during a blood meal, and enters the host's blood stream through mucous membranes or a break in the skin. Identifying the blood meal sources of triatomine vectors is critical in understanding Chagas disease transmission dynamics, can lead to identification of other vertebrates important in the transmission cycle, and aids management decisions. The latter is particularly important as there is little in the way of effective therapeutics for Chagas disease. Several techniques, mostly DNA-based, are available for blood meal identification. However, further methods are needed, particularly when sample conditions lead to low-quality DNA or to assess the risk of human cross-contamination. We demonstrate a proteomics-based approach, using liquid chromatography tandem mass spectrometry (LC-MS/MS) to identify host-specific hemoglobin peptides for blood meal identification in mouse blood control samples and apply LC-MS/MS for the first time to Triatoma dimidiata insect vectors, tracing blood sources to species. In contrast to most proteins, hemoglobin, stabilized by iron, is incredibly stable even being preserved through geologic time. We compared blood stored with and without an anticoagulant and examined field-collected insect specimens stored in suboptimal conditions such as at room temperature for long periods of time. To our knowledge, this is the first study using LC-MS/MS on field-collected arthropod disease vectors to identify blood meal composition, and where blood meal identification was confirmed with more traditional DNA-based methods. We also demonstrate the potential of synthetic peptide standards to estimate relative amounts of hemoglobin acquired when insects feed on multiple blood sources. These LC-MS/MS methods can contribute to developing Ecohealth control strategies for Chagas disease transmission and can be applied to other arthropod disease vectors.


Subject(s)
Chagas Disease/parasitology , Dietary Proteins/administration & dosage , Tandem Mass Spectrometry/methods , Triatominae/physiology , Animals , Chromatography, Liquid , Electrophoresis, Polyacrylamide Gel , Humans , Mice
5.
J Wildl Dis ; 50(1): 31-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24171567

ABSTRACT

Campylobacter jejuni is responsible for the majority of bacterial foodborne gastroenteritis in the US, usually due to the consumption of undercooked poultry. Research on which avian species transmit the bacterium is limited, especially in the US. We sampled wild birds in three families-Anatidae, Scolopacidae, and Laridae-in eastern North America to determine the prevalence and specific strains of Campylobacter. The overall prevalence of Campylobacter spp. was 9.2% for all wild birds sampled (n = 781). Campylobacter jejuni was the most prevalent species (8.1%), while Campylobacter coli and Campylobacter lari prevalence estimates were low (1.4% and 0.3%, respectively). We used multilocus sequence typing PCR specific to C. jejuni to characterize clonal complexes and sequence types isolated from wild bird samples and detected 13 novel sequence types, along with a clonal complex previously only associated with human disease (ST-658). Wild birds share an increasing amount of habitat with humans as more landscapes become fragmented and developed for human needs. Wild birds are and will remain an important aspect of public health due to their ability to carry and disperse emerging zoonotic pathogens or their arthropod vectors. As basic information such as prevalence is limited or lacking from a majority of wild birds in the US, this study provides further insight into Campylobacter epidemiology, host preference, and strain characterization of C. jejuni.


Subject(s)
Bird Diseases/epidemiology , Campylobacter Infections/veterinary , Campylobacter/isolation & purification , Animals , Animals, Wild/microbiology , Bacterial Typing Techniques/veterinary , Bird Diseases/microbiology , Birds , Campylobacter/classification , Campylobacter/genetics , Campylobacter Infections/epidemiology , Campylobacter Infections/microbiology , Campylobacter coli/classification , Campylobacter coli/genetics , Campylobacter coli/isolation & purification , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Campylobacter jejuni/isolation & purification , Campylobacter lari/classification , Campylobacter lari/genetics , Campylobacter lari/isolation & purification , Cluster Analysis , DNA, Bacterial/genetics , Humans , Mid-Atlantic Region/epidemiology , Molecular Epidemiology , Prevalence , Public Health , Sequence Analysis, DNA
6.
J Wildl Dis ; 47(3): 750-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21719846

ABSTRACT

We evaluated the occurrence of three Campylobacter species--C. jejuni, C. coli, and C. lari--from 333 wild bird fecal samples collected at Tri-State Bird Rescue and Research in Newark, Delaware, in 2008. Using multiplex polymerase chain reaction, we detected C. jejuni from six avian families with an overall prevalence rate of 7.2%. We did not detect any other Campylobacter species. Campylobacter jejuni prevalence ranged widely between different avian families with crows (Corvidae) and gulls (Laridae) having the highest prevalence rates (23% and 25%, respectively).


Subject(s)
Bird Diseases/epidemiology , Campylobacter Infections/veterinary , Campylobacter coli/isolation & purification , Campylobacter jejuni/isolation & purification , Campylobacter lari/isolation & purification , Animals , Animals, Wild/microbiology , Birds , Campylobacter Infections/epidemiology , Female , Male , Mid-Atlantic Region/epidemiology , Polymerase Chain Reaction/veterinary , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL
...