Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 814: 151925, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-34838923

ABSTRACT

Despite substantial advances in quantifying greenhouse gas (GHG) emissions from dry inland waters, existing estimates mainly consist of carbon dioxide (CO2) emissions. However, methane (CH4) may also be relevant due to its higher Global Warming Potential (GWP). We report CH4 emissions from dry inland water sediments to i) provide a cross-continental estimate of such emissions for different types of aquatic systems (i.e., lakes, ponds, reservoirs, and streams) and climate zones (i.e., tropical, continental, and temperate); and ii) determine the environmental factors that control these emissions. CH4 emissions from dry inland waters were consistently higher than emissions observed in adjacent uphill soils, across climate zones and in all aquatic systems except for streams. However, the CH4 contribution (normalized to CO2 equivalents; CO2-eq) to the total GHG emissions of dry inland waters was similar for all types of aquatic systems and varied from 10 to 21%. Although we discuss multiple controlling factors, dry inland water CH4 emissions were most strongly related to sediment organic matter content and moisture. Summing CO2 and CH4 emissions revealed a cross-continental average emission of 9.6 ± 17.4 g CO2-eq m-2 d-1 from dry inland waters. We argue that increasing droughts likely expand the worldwide surface area of atmosphere-exposed aquatic sediments, thereby increasing global dry inland water CH4 emissions. Hence, CH4 cannot be ignored if we want to fully understand the carbon (C) cycle of dry sediments.


Subject(s)
Greenhouse Gases , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Lakes , Methane/analysis , Nitrous Oxide/analysis , Rivers
2.
Ambio ; 49(2): 531-540, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31140158

ABSTRACT

Artificial water bodies like ditches, fish ponds, weirs, reservoirs, fish ladders, and irrigation channels are usually constructed and managed to optimize their intended purposes. However, human-made aquatic systems also have unintended consequences on ecosystem services and biogeochemical cycles. Knowledge about their functioning and possible additional ecosystem services is poor, especially compared to natural ecosystems. A GIS analysis indicates that currently only ~ 10% of European surface waters are covered by the European Water Framework directive, and that a considerable fraction of the excluded systems are likely human-made aquatic systems. There is a clear mismatch between the high possible significance of human-made water bodies and their low representation in scientific research and policy. We propose a research agenda to build an inventory of human-made aquatic ecosystems, support and advance research to further our understanding of the role of these systems in local and global biogeochemical cycles as well as to identify other benefits for society. We stress the need for studies that aim to optimize management of human-made aquatic systems considering all their functions and to support programs designed to overcome barriers of the adoption of optimized management strategies.


Subject(s)
Ecosystem , Fishes , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...