Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes Technol Ther ; 22(6): 444-448, 2020 06.
Article in English | MEDLINE | ID: mdl-32396395

ABSTRACT

Introduction: During the coronavirus disease 2019 (COVID-19) outbreak, novel approaches to diabetes care have been employed. Care in both the inpatient and outpatient setting has transformed considerably. Driven by the need to reduce the use of personal protective equipment and exposure for patients and providers alike, we transitioned inpatient diabetes management services to largely "virtual" or remotely provided care at our hospital. Methods: Implementation of a diabetes co-management service under the direction of the University of North Carolina division of endocrinology was initiated in July 2019. In response to the COVID-19 pandemic, the diabetes service was largely transitioned to a virtual care model in March 2020. Automatic consults for COVID-19 patients were implemented. Glycemic outcomes from before and after transition to virtual care were evaluated. Results: Data over a 15-week period suggest that using virtual care for diabetes management in the hospital is feasible and can provide similar outcomes to traditional face-to-face care. Conclusion: Automatic consults for COVID-19 patients ensure that patients with serious illness receive specialized diabetes care. Transitioning to virtual care models does not limit the glycemic outcomes of inpatient diabetes care and should be employed to reduce patient and provider exposure in the setting of COVID-19. These findings may have implications for reducing nosocomial infection in less challenging times and might address shortage of health care providers, especially in the remote areas.


Subject(s)
Coronavirus Infections/prevention & control , Cross Infection/prevention & control , Diabetes Mellitus/therapy , Pandemics/prevention & control , Patient Transfer/methods , Pneumonia, Viral/prevention & control , Telemedicine/methods , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Cross Infection/virology , Diabetes Mellitus/virology , Feasibility Studies , Female , Humans , Male , Patient Care Team , Pneumonia, Viral/complications , SARS-CoV-2
2.
Anal Chem ; 80(20): 7876-81, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18798652

ABSTRACT

Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.


Subject(s)
Fluorescence , Calibration , Reference Standards , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...