Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(6)2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33804602

ABSTRACT

In this study, we further develop the processing of ground-based interferometric radar measurements for the application of bridge monitoring. Applying ground-based radar in such complex setups or long measurement durations requires advanced processing steps to receive accurate measurements. These steps involve removing external influences from the measurement and evaluating the measurement uncertainty during processing. External influences include disturbances caused by objects moving through the signal, static clutter from additional scatterers, and changes in atmospheric properties. After removing these influences, the line-of-sight displacement vectors, measured by multiple ground-based radars, are decomposed into three-dimensional displacement components. The advanced processing steps are applied exemplarily on measurements with two sensors at a prestressed concrete bridge near Coburg (Germany). The external influences are successfully removed, and two components of the three-dimensional displacement vector are determined. A measurement uncertainty of less than 0.1 mm is achieved for the discussed application.

2.
Article in English | MEDLINE | ID: mdl-30200256

ABSTRACT

Inland waters are of great importance for scientists as well as authorities since they are essential ecosystems and well known for their biodiversity. When monitoring their respective water quality, in situ measurements of water quality parameters are spatially limited, costly and time-consuming. In this paper, we propose a combination of hyperspectral data and machine learning methods to estimate and therefore to monitor different parameters for water quality. In contrast to commonly-applied techniques such as band ratios, this approach is data-driven and does not rely on any domain knowledge. We focus on CDOM, chlorophyll a and turbidity as well as the concentrations of the two algae types, diatoms and green algae. In order to investigate the potential of our proposal, we rely on measured data, which we sampled with three different sensors on the river Elbe in Germany from 24 June⁻12 July 2017. The measurement setup with two probe sensors and a hyperspectral sensor is described in detail. To estimate the five mentioned variables, we present an appropriate regression framework involving ten machine learning models and two preprocessing methods. This allows the regression performance of each model and variable to be evaluated. The best performing model for each variable results in a coefficient of determination R 2 in the range of 89.9% to 94.6%. That clearly reveals the potential of the machine learning approaches with hyperspectral data. In further investigations, we focus on the generalization of the regression framework to prepare its application to different types of inland waters.


Subject(s)
Chlorophyll A/analysis , Chlorophyll/analysis , Diatoms/growth & development , Ecosystem , Environmental Monitoring/instrumentation , Humic Substances/analysis , Machine Learning , Spectrum Analysis , Water Quality , Germany
SELECTION OF CITATIONS
SEARCH DETAIL
...