Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(16): 8900-8911, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32253314

ABSTRACT

Signaling pathways that sense amino acid abundance are integral to tissue homeostasis and cellular defense. Our laboratory has previously shown that halofuginone (HF) inhibits the prolyl-tRNA synthetase catalytic activity of glutamyl-prolyl-tRNA synthetase (EPRS), thereby activating the amino acid response (AAR). We now show that HF treatment selectively inhibits inflammatory responses in diverse cell types and that these therapeutic benefits occur in cells that lack GCN2, the signature effector of the AAR. Depletion of arginine, histidine, or lysine from cultured fibroblast-like synoviocytes recapitulates key aspects of HF treatment, without utilizing GCN2 or mammalian target of rapamycin complex 1 pathway signaling. Like HF, the threonyl-tRNA synthetase inhibitor borrelidin suppresses the induction of tissue remodeling and inflammatory mediators in cytokine-stimulated fibroblast-like synoviocytes without GCN2, but both aminoacyl-tRNA synthetase (aaRS) inhibitors are sensitive to the removal of GCN1. GCN1, an upstream component of the AAR pathway, binds to ribosomes and is required for GCN2 activation. These observations indicate that aaRS inhibitors, like HF, can modulate inflammatory response without the AAR/GCN2 signaling cassette, and that GCN1 has a role that is distinct from its activation of GCN2. We propose that GCN1 participates in a previously unrecognized amino acid sensor pathway that branches from the canonical AAR.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Anti-Inflammatory Agents/pharmacology , Arthritis, Rheumatoid/drug therapy , Piperidines/pharmacology , Quinazolinones/pharmacology , Signal Transduction/drug effects , Amino Acids/metabolism , Amino Acyl-tRNA Synthetases/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/surgery , Cell Line , Fibroblasts , Gene Knockdown Techniques , Human Umbilical Vein Endothelial Cells , Humans , Lung/cytology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Knockout , Piperidines/therapeutic use , Primary Cell Culture , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Quinazolinones/therapeutic use , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , RNA-Seq , Signal Transduction/immunology , Synovial Membrane/cytology , Synovial Membrane/pathology , Synoviocytes , Trans-Activators/genetics , Trans-Activators/metabolism
2.
J Heart Lung Transplant ; 35(4): 518-27, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26787621

ABSTRACT

BACKGROUND: Increasing evidence suggests that interleukin (IL)-17A plays an important role in chronic lung allograft dysfunction (CLAD), characterized by airway and lung parenchymal fibrosis, after lung transplantation. Halofuginone is a plant derivative that has been shown to inhibit Th17 differentiation. The purpose of this study was to examine the effect of halofuginone on CLAD development using a minor alloantigen‒mismatched mouse orthotopic lung transplant model. METHODS: C57BL/6 recipient mice received an orthotopic left lung transplant from C57BL/10 donors, mismatched for minor antigens. Lung transplant recipients received daily intraperitoneal injections of 2.5 µg halofuginone or vehicle alone. Lung grafts were assessed on Days 7, 14, and 28 post-transplant. RESULTS: Compared with control mice, on Day 28 post-transplant, lung grafts of mice treated with halofuginone showed a significant reduction in the percentage of obliterated airways (6.8 ± 4.7% vs 52.5 ± 13.8%, p < 0.01), as well as significantly reduced parenchymal fibrosis (5.5 ± 2.3% vs 35.9 ± 10.9%, p < 0.05). Immunofluorescent staining for IL-17A demonstrated a decreased number and frequency of IL-17A‒positive cells in halofuginone-treated lung grafts on Day 28, as compared with controls. Halofuginone treatment also decreased IL-17A and IL-22 transcripts at Day 14, transforming growth factor-ß1 and matrix metalloproteinase-2 transcripts at Days 14 and 28. CONCLUSION: The beneficial effect of halofuginone on development of airway and lung parenchymal fibrosis in the mouse lung transplant model highlights the important role of IL-17A in CLAD and merits further pre-clinical and clinical studies.


Subject(s)
Graft Rejection/drug therapy , Interleukin-17/metabolism , Lung Transplantation , Piperidines/pharmacology , Quinazolinones/pharmacology , Animals , Chronic Disease , Disease Models, Animal , Graft Rejection/immunology , Graft Rejection/pathology , Male , Mice , Mice, Inbred C57BL , Protein Synthesis Inhibitors/pharmacology , Th17 Cells/immunology , Transplantation, Homologous
3.
Arthritis Res Ther ; 17: 126, 2015 May 15.
Article in English | MEDLINE | ID: mdl-25975695

ABSTRACT

INTRODUCTION: Engagement of the homotypic cell-to-cell adhesion molecule cadherin-11 on rheumatoid arthritis (RA) synovial fibroblasts with a chimeric molecule containing the cadherin-11 extracellular binding domain stimulated cytokine, chemokine, and matrix metalloproteinases (MMP) release, implicating cadherin-11 signaling in RA pathogenesis. The objective of this study was to determine if cadherin-11 extracellular domain fragments are found inside the joint and if a physiologic synovial fibroblast cleavage pathway releases those fragments. METHODS: Cadherin-11 cleavage fragments were detected by western blot in cell media or lysates. Cleavage was interrupted using chemical inhibitors or short-interfering RNA (siRNA) gene silencing. The amount of cadherin-11 fragments in synovial fluid was measured by western blot and ELISA. RESULTS: Soluble cadherin-11 extracellular fragments were detected in human synovial fluid at significantly higher levels in RA samples compared to osteoarthritis (OA) samples. A cadherin-11 N-terminal extracellular binding domain fragment was shed from synovial fibroblasts after ionomycin stimulation, followed by presenilin 1 (PSN1)-dependent regulated intramembrane proteolysis of the retained membrane-bound C-terminal fragments. In addition to ionomycin-induced calcium flux, tumor necrosis factor (TNF)-α also stimulated cleavage in both two- and three-dimensional fibroblast cultures. Although cadherin-11 extracellular domains were shed by a disintegrin and metalloproteinase (ADAM) 10 in several cell types, a novel ADAM- and metalloproteinase-independent activity mediated shedding in primary human fibroblasts. CONCLUSIONS: Cadherin-11 undergoes ectodomain shedding followed by regulated intramembrane proteolysis in synovial fibroblasts, triggered by a novel sheddase that generates extracelluar cadherin-11 fragments. Cadherin-11 fragments were enriched in RA synovial fluid, suggesting they may be a marker of synovial burden and may function to modify cadherin-11 interactions between synovial fibroblasts.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cadherins/metabolism , Fibroblasts/metabolism , Synovial Membrane/metabolism , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Immunoprecipitation , Osteoarthritis/metabolism , Peptide Fragments/metabolism , RNA, Small Interfering , Synovial Fluid/chemistry , Synovial Fluid/metabolism , Transfection
4.
Sci Transl Med ; 7(288): 288ra77, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25995223

ABSTRACT

The emergence of drug resistance is a major limitation of current antimalarials. The discovery of new druggable targets and pathways including those that are critical for multiple life cycle stages of the malaria parasite is a major goal for developing next-generation antimalarial drugs. Using an integrated chemogenomics approach that combined drug resistance selection, whole-genome sequencing, and an orthogonal yeast model, we demonstrate that the cytoplasmic prolyl-tRNA (transfer RNA) synthetase (PfcPRS) of the malaria parasite Plasmodium falciparum is a biochemical and functional target of febrifugine and its synthetic derivative halofuginone. Febrifugine is the active principle of a traditional Chinese herbal remedy for malaria. We show that treatment with febrifugine derivatives activated the amino acid starvation response in both P. falciparum and a transgenic yeast strain expressing PfcPRS. We further demonstrate in the Plasmodium berghei mouse model of malaria that halofuginol, a new halofuginone analog that we developed, is active against both liver and asexual blood stages of the malaria parasite. Halofuginol, unlike halofuginone and febrifugine, is well tolerated at efficacious doses and represents a promising lead for the development of dual-stage next-generation antimalarials.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Antimalarials/pharmacology , Enzyme Inhibitors/pharmacology , Malaria, Falciparum/drug therapy , Piperidines/pharmacology , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Quinazolines/pharmacology , Quinazolinones/pharmacology , Amino Acyl-tRNA Synthetases/metabolism , Animals , Antimalarials/chemistry , Antimalarials/toxicity , Computer-Aided Design , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Design , Drug Resistance , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/toxicity , Erythrocytes/parasitology , Liver/parasitology , Malaria, Falciparum/blood , Malaria, Falciparum/parasitology , Mice , Models, Molecular , Molecular Structure , Molecular Targeted Therapy , Piperidines/chemistry , Piperidines/toxicity , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Quinazolines/chemistry , Quinazolines/toxicity , Quinazolinones/chemistry , Quinazolinones/toxicity , Structure-Activity Relationship , Time Factors
5.
Cell ; 158(5): 1033-1044, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25171405

ABSTRACT

Although tyrosine phosphorylation of extracellular proteins has been reported to occur extensively in vivo, no secreted protein tyrosine kinase has been identified. As a result, investigation of the potential role of extracellular tyrosine phosphorylation in physiological and pathological tissue regulation has not been possible. Here, we show that VLK, a putative protein kinase previously shown to be essential in embryonic development, is a secreted protein kinase, with preference for tyrosine, that phosphorylates a broad range of secreted and ER-resident substrate proteins. We find that VLK is rapidly and quantitatively secreted from platelets in response to stimuli and can tyrosine phosphorylate coreleased proteins utilizing endogenous as well as exogenous ATP sources. We propose that discovery of VLK activity provides an explanation for the extensive and conserved pattern of extracellular tyrosine phosphophorylation seen in vivo, and extends the importance of regulated tyrosine phosphorylation into the extracellular environment.


Subject(s)
Blood Platelets/enzymology , Embryo, Mammalian/enzymology , Protein Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Amino Acid Sequence , Animals , Embryonic Development , Glycosylation , Humans , Mice , Molecular Sequence Data , Phosphorylation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Secretory Pathway
6.
Nat Chem Biol ; 8(3): 311-7, 2012 Feb 12.
Article in English | MEDLINE | ID: mdl-22327401

ABSTRACT

Febrifugine, the bioactive constituent of one of the 50 fundamental herbs of traditional Chinese medicine, has been characterized for its therapeutic activity, though its molecular target has remained unknown. Febrifugine derivatives have been used to treat malaria, cancer, fibrosis and inflammatory disease. We recently demonstrated that halofuginone (HF), a widely studied derivative of febrifugine, inhibits the development of T(H)17-driven autoimmunity in a mouse model of multiple sclerosis by activating the amino acid response (AAR) pathway. Here we show that HF binds glutamyl-prolyl-tRNA synthetase (EPRS), inhibiting prolyl-tRNA synthetase activity; this inhibition is reversed by the addition of exogenous proline or EPRS. We further show that inhibition of EPRS underlies the broad bioactivities of this family of natural product derivatives. This work both explains the molecular mechanism of a promising family of therapeutics and highlights the AAR pathway as an important drug target for promoting inflammatory resolution.


Subject(s)
Amino Acyl-tRNA Synthetases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Piperidines/pharmacology , Quinazolines/pharmacology , Quinazolinones/pharmacology , Amino Acyl-tRNA Synthetases/chemistry , Amino Acyl-tRNA Synthetases/metabolism , Animals , Cell Differentiation/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Piperidines/chemistry , Quinazolines/chemistry , Quinazolinones/chemistry , Structure-Activity Relationship , Th17 Cells/drug effects , Th17 Cells/enzymology , Th17 Cells/immunology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...