Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 13: 84, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23692661

ABSTRACT

BACKGROUND: myo-Inositol (Ins) metabolism during early stages of seed development plays an important role in determining the distributional relationships of some seed storage components such as the antinutritional factors, sucrose galactosides (also known as raffinose oligosaccharides) and phytic acid (PhA) (myo-inositol 1,2,3,4,5,6-hexakisphosphate). The former is a group of oligosaccharides, which plays a role in desiccation at seed maturation. They are not easily digested by monogastric animals, hence their flatulence-causing properties. Phytic acid is highly negatively charged, which chelates positive ions of essential minerals and decreases their bioavailability. It is also a major cause of phosphate-related water pollution. Our aim was to investigate the influence of competitive diversion of Ins as common substrate on the biosynthesis of phytate and sucrose galactosides. RESULTS: We have studied the initial metabolic patterns of Ins in developing seeds of Brassica napus and determined that early stages of seed development are marked by rapid deployment of Ins into a variety of pathways, dominated by interconversion of polar (Ins phosphates) and non-polar (phospholipids) species. In a time course experiment at early stages of seed development, we show Ins to be a highly significant constituent of the endosperm and seed coat, but with no phytate biosynthesis occurring in either tissue. Phytate accumulation appears to be confined mainly within the embryo throughout seed development and maturation. In our approach, the gene for myo-inositol methyltransferase (IMT), isolated from Mesembryanthemum crystallinum (ice plant), was transferred to B. napus under the control of the seed-specific promoters, napin and phaseolin. Introduction of this new metabolic step during seed development prompted Ins conversion to the corresponding monomethyl ether, ononitol, and affected phytate accumulation. We were able to produce homozygous transgenic lines with 19%-35% average phytate reduction. Additionally, changes in the raffinose content and related sugars occurred along with enhanced sucrose levels. Germination rates, viability and other seed parameters were unaffected by the IMT transgene over-expression. CONCLUSIONS: Competitive methylation of Ins during seed development reduces seed antinutritional components and enhances its nutritional characteristics while maintaining adequate phosphate reserves. Such approach should potentially raise the canola market value and likely, that of other crops.


Subject(s)
Brassica napus/growth & development , Brassica napus/metabolism , Inositol/metabolism , Metabolic Networks and Pathways , Phytic Acid/metabolism , Seeds/metabolism , Germination , Methylation , Seeds/growth & development
2.
Plant Physiol ; 156(1): 346-56, 2011 May.
Article in English | MEDLINE | ID: mdl-21402797

ABSTRACT

Embryogenesis is central to the life cycle of most plant species. Despite its importance, because of the difficulty associated with embryo isolation, global gene expression programs involved in plant embryogenesis, especially the early events following fertilization, are largely unknown. To address this gap, we have developed methods to isolate whole live Arabidopsis (Arabidopsis thaliana) embryos as young as zygote and performed genome-wide profiling of gene expression. These studies revealed insights into patterns of gene expression relating to: maternal and paternal contributions to zygote development, chromosomal level clustering of temporal expression in embryogenesis, and embryo-specific functions. Functional analysis of some of the modulated transcription factor encoding genes from our data sets confirmed that they are critical for embryogenesis. Furthermore, we constructed stage-specific metabolic networks mapped with differentially regulated genes by combining the microarray data with the available Kyoto Encyclopedia of Genes and Genomes metabolic data sets. Comparative analysis of these networks revealed the network-associated structural and topological features, pathway interactions, and gene expression with reference to the metabolic activities during embryogenesis. Together, these studies have generated comprehensive gene expression data sets for embryo development in Arabidopsis and may serve as an important foundational resource for other seed plants.


Subject(s)
Arabidopsis , Gene Expression Regulation, Plant , Metabolic Networks and Pathways , Arabidopsis/embryology , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Profiling , Gene Expression Regulation, Developmental , Oligonucleotide Array Sequence Analysis , Organ Specificity , Seeds/embryology , Seeds/genetics , Seeds/metabolism
3.
Plant Cell Environ ; 32(12): 1664-81, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19671099

ABSTRACT

Phosphatidylinositol-specific phospholipase C (PtdIns-PLC2) plays a central role in the phosphatidylinositol-specific signal transduction pathway. It catalyses the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate to produce two second messengers, sn-1,2-diacylglycerol and inositol 1,4,5-trisphosphate. The former is a membrane activator of protein kinase C in mammalian systems, and the latter is a Ca(2+) modulator which induces distinctive oscillating bursts of cytosolic Ca(2+), resulting in regulation of gene expression and activation of proteins. Sustained over-expression of BnPtdIns-PLC2 in transgenic Brassica napus lines brought about an early shift from vegetative to reproductive phases, and shorter maturation periods, accompanied by notable alterations in hormonal distribution patterns in various tissues. The photosynthetic rate increased, while stomata were partly closed. Numerous gene expression changes that included induction of stress-related genes such as glutathione S-transferase, hormone-regulated and regulatory genes, in addition to a number of kinases, calcium-regulated factors and transcription factors, were observed. Other changes included increased phytic acid levels and phytohormone organization patterns. These results suggest the importance of PtdIns-PLC2 as an elicitor of a battery of events that systematically control hormone regulation, and plant growth and development in what may be a preprogrammed mode.


Subject(s)
Brassica napus/genetics , Brassica rapa/enzymology , Droughts , Flowers/growth & development , Phosphoinositide Phospholipase C/metabolism , Plant Growth Regulators/metabolism , Brassica napus/enzymology , Brassica rapa/genetics , Brassica rapa/growth & development , Fatty Acids/analysis , Flowers/enzymology , Gene Expression Regulation, Plant , Inositol Phosphates/isolation & purification , Inositol Phosphates/metabolism , Phosphoinositide Phospholipase C/genetics , Phytic Acid/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , RNA, Plant/genetics , Seeds/chemistry , Signal Transduction
4.
Plant Biotechnol J ; 7(6): 537-49, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19486322

ABSTRACT

Vaccines against rabbit haemorrhagic disease virus (RHDV) are commercially produced in experimentally infected rabbits. A genetically engineered and manufactured version of the major structural protein of RHDV (VP60) is considered to be an alternative approach for vaccine production. Plants have the potential to become an excellent recombinant production system, but the low expression level and insufficient immunogenic potency of plant-derived VP60 still hamper its practical use. In this study, we analysed the expression of a novel multimeric VP60-based antigen in four different plant species, including Nicotiana tabacum L., Solanum tuberosum L., Brassica napus L. and Pisum sativum L. Significant differences were detected in the expression patterns of the novel fusion antigen cholera toxin B subunit (CTB)::VP60 (ctbvp60(SEKDEL)) at the mRNA and protein levels. Pentameric CTB::VP60 molecules were only detected in N. tabacum and P. sativum, and displayed equal levels of CTB, at approximately 0.01% of total soluble protein (TSP), and traces of detectable VP60. However, strong enhancement of the CTB protein content via self-fertilization was only observed in P. sativum, where it reached up to 0.7% of TSP. In rabbits, a strong decrease in the protective vaccine dose required from 48-400 microg potato-derived VP60 [Castanon, S., Marin, M.S., Martin-Alonso, J.M., Boga, J.A., Casais, R., Humara, J.M., Ordas, R.J. and Parra, F. (1999) Immunization with potato plants expressing VP60 protein protects against rabbit hemorrhagic disease virus. J. Virol. 73, 4452-4455; Castanon, S., Martin-Alonso, J.M., Marin, M.S., Boga, J.A., Alonso, P., Parra, F. and Ordas, R.J. (2002) The effect of the promoter on expression of VP60 gene from rabbit hemorrhagic disease virus in potato plants. Plant Sci. 162, 87-95] to 0.56-0.28 microg antigenic VP60 (measured with VP60 enzyme-linked immunosorbent assay) of crude CTB::VP60 pea extracts was demonstrated. Rabbits immunized with pea-derived CTB::VP60 showed anti-VP60-specific antibodies, similar to RikaVacc((R))-immunized rabbits, and survived RHDV challenge.


Subject(s)
Caliciviridae Infections/veterinary , Hemorrhagic Disease Virus, Rabbit/immunology , Pisum sativum/immunology , Viral Structural Proteins/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antigens, Viral/immunology , Caliciviridae Infections/prevention & control , Cholera Toxin/immunology , DNA, Plant/genetics , Enzyme-Linked Immunosorbent Assay , Gene Expression , Pisum sativum/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/immunology , Promoter Regions, Genetic , Rabbits , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Viral Structural Proteins/genetics
5.
Protein Expr Purif ; 67(1): 15-22, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19364534

ABSTRACT

Late embryogenesis abundant (LEA) proteins are intrinsically disordered proteins that accumulate in organisms during the development of dehydration stress tolerance and cold acclimation. Group 3 LEA proteins have been implicated in the prevention of cellular protein denaturation and membrane damage during desiccation and anhydrobiosis. We tested the ability of LEA proteins to facilitate recombinant expression of recalcitrant and intrinsic membrane proteins. Two Brassica napus Group 3 LEA proteins, BN115m and a truncated fragment of BNECP63, were fused to two target proteins identified as recalcitrant to overexpression in soluble form or outside of inclusion bodies. Fusion of a truncated peptide of BNECP63 is sufficient to provide soluble and high levels of recombinant overexpression of BNPsbS (an intrinsic membrane chlorophyll-binding protein of photosystem II light harvesting complex) and a peptide of the Hepatitis C viral polyprotein. Furthermore, fusion of the recombinant target proteins to BNECP63 or BN115 prevented irreversible heat- and freeze-induced precipitation. These experiments not only underscore the exploitation of LEA-type peptides in facilitating protein overexpression and protection, but also provide insights into the mechanism of LEA proteins in cellular protection.


Subject(s)
Escherichia coli/genetics , Light-Harvesting Protein Complexes/biosynthesis , Plant Proteins/metabolism , Viral Core Proteins/biosynthesis , Brassica napus/genetics , Chromatography, Liquid , Light-Harvesting Protein Complexes/genetics , Plant Proteins/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Solubility , Viral Core Proteins/genetics
6.
J Exp Bot ; 59(10): 2857-73, 2008.
Article in English | MEDLINE | ID: mdl-18552352

ABSTRACT

Brassica napus cultivar Westar is non-embryogenic under all standard protocols for induction of microspore embryogenesis; however, the rare embryos produced in Westar microspore cultures, induced with added brassinosteroids, were found to develop into heritably stable embryogenic lines after chromosome doubling. One of the Westar-derived doubled haploid (DH) lines, DH-2, produced up to 30% the number of embryos as the highly embryogenic B. napus line, Topas DH4079. Expression analysis of marker genes for embryogenesis in Westar and the derived DH-2 line, using real-time reverse transcription-PCR, revealed that the timely expression of embryogenesis-related genes such as LEAFY COTYLEDON1 (LEC1), LEC2, ABSCISIC ACID INSENSITIVE3, and BABY BOOM1, and an accompanying down-regulation of pollen-related transcripts, were associated with commitment to embryo development in Brassica microspores. Microarray comparisons of 7 d cultures of Westar and Westar DH-2, using a B. napus seed-focused cDNA array (10 642 unigenes), identified highly expressed genes related to protein synthesis, translation, and response to stimulus (Gene Ontology) in the embryogenic DH-2 microspore-derived cell cultures. In contrast, transcripts for pollen-expressed genes were predominant in the recalcitrant Westar microspores. Besides being embryogenic, DH-2 plants showed alterations in morphology and architecture as compared with Westar, for example epinastic leaves, non-abscised petals, pale flower colour, and longer lateral branches. Auxin, cytokinin, and abscisic acid (ABA) profiles in young leaves, mature leaves, and inflorescences of Westar and DH-2 revealed no significant differences that could account for the alterations in embryogenic potential or phenotype. Various mechanisms accounting for the increased capacity for embryogenesis in Westar-derived DH lines are considered.


Subject(s)
Brassica napus/genetics , Plants, Genetically Modified/genetics , Pollen/genetics , Brassica napus/cytology , Brassica napus/metabolism , Breeding , Flowers/cytology , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Pollen/cytology , Pollen/metabolism , Transcription, Genetic
7.
Genome ; 51(3): 236-42, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18356959

ABSTRACT

Brassica species represent several important crops including canola (Brassica napus). Understanding of genetic elements that contribute to seed-associated functions will impact future improvements in the canola crop. Brassica species share a very close taxonomic and molecular relationship with Arabidopsis thaliana. However, there are several subtle but distinct seed-associated agronomic characteristics that differ among the oil seed crop species. To address these, we have generated 67,535 ESTs predominately from Brassica seeds, analyzed these sequences, and identified 10,642 unigenes for the preparation of a targeted seed cDNA array. A set of 10,642 PCR primer pairs was designed and corresponding amplicons were produced for spotting, along with relevant controls. Critical quality control tests produced satisfactory results for use of this microarray in biological experiments. The microarray was also tested with specific RNA targets from embryos, germinating seeds, and leaf tissues. The hybridizations, signal intensities, and overall quality of these slides were consistent and reproducible. Additionally, there are 429 ESTs represented on the array that show no homology with any A. thaliana annotated gene or any gene in the Brassica genome databases or other plant databases; however, all of these probes hybridized to B. napus transcripts, indicating that the array also will be useful in defining expression patterns for genes so far unique to Brassica species.


Subject(s)
Brassica napus/genetics , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Seeds/genetics , Brassica napus/classification , Brassica napus/embryology , DNA, Plant/metabolism , Expressed Sequence Tags , Gene Library , Genes, Plant , Plant Proteins/genetics , Reproducibility of Results
8.
Plant Physiol ; 145(3): 974-84, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17885082

ABSTRACT

Fatty acyl esters of phytosterols are a major form of sterol conjugates distributed in many parts of plants. In this study we report an Arabidopsis (Arabidopsis thaliana) gene, AtSAT1 (At3g51970), which encodes for a novel sterol O-acyltransferase. When expressed in yeast (Saccharomyces cerevisiae), AtSAT1 mediated production of sterol esters enriched with lanosterol. Enzyme property assessment using cell-free lysate of yeast expressing AtSAT1 suggested the enzyme preferred cycloartenol as acyl acceptor and saturated fatty acyl-Coenyzme A as acyl donor. Taking a transgenic approach, we showed that Arabidopsis seeds overexpressing AtSAT1 accumulated fatty acyl esters of cycloartenol, accompanied by substantial decreases in ester content of campesterol and beta-sitosterol. Furthermore, fatty acid components of sterol esters from the transgenic lines were enriched with saturated and long-chain fatty acids. The enhanced AtSAT1 expression resulted in decreased level of free sterols, but the total sterol content in the transgenic seeds increased by up to 60% compared to that in wild type. We conclude that AtSAT1 mediates phytosterol ester biosynthesis, alternative to the route previously described for phospholipid:sterol acyltransferase, and provides the molecular basis for modification of phytosterol ester level in seeds.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Phytosterols/biosynthesis , Sterol O-Acyltransferase/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Molecular Sequence Data , Molecular Structure , Sterol O-Acyltransferase/chemistry , Sterol O-Acyltransferase/genetics , Sterols/biosynthesis , Sterols/chemistry , Substrate Specificity
9.
Plant Mol Biol ; 61(1-2): 269-81, 2006 May.
Article in English | MEDLINE | ID: mdl-16786306

ABSTRACT

The Polima (pol) system of cytoplasmic male sterility (CMS) and its fertility restorer gene Rfp are used in hybrid rapeseed production in Brassica napus. To facilitate map-based cloning of the Rfp gene, we have successfully transferred the pol cytoplasm and Rfp from the amphidiploid B. napus to the diploid species B. rapa and generated a doubled haploid pol cytoplasm B. rapa population that segregates for the Rfp gene. This was achieved through interspecific crosses, in vitro rescue of hybrid embryos, backcrosses, and microspore culture. Male fertility conditioned by Rfp was shown to co-segregate in this population with Rfp-specific mitochondrial transcript modifications and with DNA markers previously shown to be linked to Rfp in B. napus. The selfed-progeny of one doubled haploid plant were confirmed to be characteristic B. rapa diploids by cytogenetic analysis. Clones recovered from a genomic library derived from this plant line using the RFLP probe cRF1 fell into several distinct physical contigs, one of which contained Rfp-linked polymorphic restriction fragments detected by this probe. This indicates that chromosomal DNA segments anchored in the Rfp region can be recovered from this library and that the library may therefore prove to be a useful resource for the eventual isolation of the Rfp gene.


Subject(s)
Brassica napus/genetics , Brassica rapa/genetics , Cloning, Molecular , Genes, Plant , Haploidy , Brassica napus/anatomy & histology , Brassica napus/metabolism , Brassica rapa/anatomy & histology , Brassica rapa/metabolism , Chromosome Mapping , Chromosomes, Plant/ultrastructure , Cosmids/genetics , Fertility/genetics , Genetic Markers , Genomic Library , Hybridization, Genetic , Meiosis , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Polymorphism, Genetic , RNA, Messenger/metabolism
10.
Planta ; 220(5): 777-84, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15480754

ABSTRACT

The cloning and identification of full-length cDNA fragments coding for the Brassica napus phosphatidylinositol-specific phospholipase C2 (BnPLC2), phosphatidylinositol 3-kinase (BnVPS34) and phosphatidylinositol synthase (BnPtdIns S1) is described. In addition, two complementary fragments (120 nucleotides long) corresponding to Arabidopsis PtdIns 4-kinase (PtdIns 4-K) and PtdIns-4-phosphate 5-kinase (PtdIns4P 5-K) sequences were chemically synthesized. These, as well as the cDNA clones, were used as probes to study the corresponding steady state mRNA levels in different tissues and developmental stages of B. napus, as well as in response to different environmental conditions. Transcripts corresponding to BnPLC2, BnPtdIns S1, BnVPS34 and PtdIns 4-K were found constitutively expressed at different levels in most tissues, with young leaves, siliques, and developing seeds showing the lowest levels. No detectable PtdIns4P 5-K transcripts were found in buds or flowers. Up-regulation of BnPLC2 was seen in response to low temperature stress, which was notably accompanied by a parallel down-regulation of BnPtdIns S1, while BnVPS34 and PtdIns 4-K remained at control levels. A moderate increase in PtdIns4P 5-K levels was noted. In high salinity conditions BnPtdIns S1, BnVPS34 and BnPLC2 transcripts had similar responses but at different levels, with no major changes detected for PtdIns 4-K or PtdIns4P 5-K. Significantly, all five transcripts increased under drought stress conditions and all stressed plants clearly showed relatively higher levels of total inositol trisphosphate.


Subject(s)
Brassica napus/enzymology , Gene Expression Regulation, Plant/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols/physiology , Transferases (Other Substituted Phosphate Groups)/metabolism , Type C Phospholipases/metabolism , Brassica napus/physiology , CDP-Diacylglycerol-Inositol 3-Phosphatidyltransferase , Cloning, Molecular , Cold Temperature , Down-Regulation , Flowers/physiology , Germination/physiology , Seeds/physiology , Signal Transduction , Sodium Chloride , Transcription, Genetic , Water
11.
Planta ; 218(3): 483-91, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14574574

ABSTRACT

Approximately 5000 plaques derived from a Brassica napus L. (canola) seed-cDNA library representing 15 days after pollination (DAP) were differentially screened for highly expressed genes at the early stages of seed development. Analysis of 104 differentially expressed sequence tags revealed 54 unique genes, of which 33 had putative homologues described in Arabidopsis thaliana (L.) Heynh. or B. napus. These encoded diverse proteins, ranging from proteins of unknown function to metabolic enzymes and proteins associated with cell structure and development. Twenty-five genes were only expressed in seeds, and 11 of these started to express as early as 5 or 10 DAP. The majority of the seed-specific genes that are expressed at early stages of seed development encoded proteins with high similarity to hypothetical Arabidopsis proteins. Tissue-specificity determined by Northern analysis revealed that four seed-specific genes were expressed only in seed coats and another five in both embryos and seed coats. Analysis of transcript profiles of seed-abundant as well as seed-specific genes, and their expression patterns, implies that the B. napus seed is undergoing an active cell proliferation during 10-20 DAP, while establishing metabolic networks for subsequent seed maturation.


Subject(s)
Brassica napus/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Seeds/genetics , Transcription, Genetic/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Blotting, Northern , Brassica napus/growth & development , DNA, Complementary/genetics , DNA, Plant/genetics , Enzymes/genetics , Expressed Sequence Tags , Models, Genetic , Plant Proteins/genetics
12.
Planta ; 215(2): 248-57, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12029474

ABSTRACT

The cyclin-dependent protein kinases (CDKs) have a central role in cell cycle regulation and can be inhibited by the binding of small protein CDK inhibitors. The first plant CDK inhibitor gene ICK1 was previously identified in Arabidopsis thaliana. In comparison to known animal CDK inhibitors, ICK1 protein exhibits unique structural and functional properties. The expression of ICK1 directed by the constitutive CaMV 35S promoter was shown to inhibit cell division and plant growth. The aim of this study was to determine the effects of ICK1 overexpression on particular organs and cells. ICK1 was expressed in specific tissues or cells of Brassica napus L. plants using two tissue-specific promoters, Arabidopsis AP3 and Brassica Bgp1. Transgenic AP3-ICK1 plants were morphologically normal except for some modified flowers either without petals or with petals of reduced size. Surprisingly, petals of novel shapes such as tubular petals were also observed, indicating a profound effect of cell division inhibition on morphogenesis. The cell size in the smaller modified petals was similar to that in control petals, suggesting that the reduction of petal size is mainly due to the reduction of cell numbers and that the inhibition of cell division does not necessarily lead to an increase in cell size. Transgenic Bgp1-ICK1 plants were normal morphologically; however, dramatic decreases in seed production were observed in some plants. In those plants, the ability of pollen to germinate and pollen nuclear number were affected. These results are discussed in relation to the cell cycle and plant development.


Subject(s)
Brassica/genetics , Cell Cycle Proteins/genetics , Plant Stems/growth & development , Pollen/growth & development , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassica/growth & development , Cell Division/genetics , Cell Size/genetics , Cyclin-Dependent Kinase Inhibitor Proteins , Cyclin-Dependent Kinases/antagonists & inhibitors , Gene Expression Regulation, Plant , MADS Domain Proteins/genetics , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Recombinant Fusion Proteins/genetics
13.
Physiol Plant ; 113(2): 176-184, 2001 Oct.
Article in English | MEDLINE | ID: mdl-12060294

ABSTRACT

A genomic clone encoding a thiohydroximate S-glucosyltransferase (S-GT) was isolated from Brassica napus by library screening with probes generated by PCR using degenerated primers. Its corresponding cDNA was amplified by rapid amplification of cDNA ends (RACE) PCR and also cloned by cDNA library screening. The genomic clone was 5 896 bp long and contained a 173-bp intron. At least two copies of the S-GT gene were present in B. napus. The full-length cDNA clone was 1.5 kb long and contained an open reading frame encoding a 51-kDa polypeptide. The deduced amino acid sequence shared a significant degree of homology with other glucosyltransferases characterized in other species, including a highly conserved motif within this family of enzymes corresponding to the glucose-binding domain. The recombinant protein was expressed in Escherichia coli, and the enzyme activity was tested by a biochemical assay based on the measure of glucose incorporation. The high thiohydroximate S-GT activity detected from the recombinant protein confirmed that this clone was indeed a S-glucosyltransferase.

SELECTION OF CITATIONS
SEARCH DETAIL
...