Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(14): 3456-3469, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38895892

ABSTRACT

We combine two-photon-excited fluorescence microscopy and acoustofluidic trapping in a spherical microchamber to in vitro study cells and cell clusters three-dimensionally close to in vivo conditions. The two-photon microscopy provides the in-depth 3D analysis of the spherical microchamber dimensions as well as the positions of trapped samples therein with high spatial precision and high temporal resolution enabling even tracking of the fast moving particles. Furthermore, optical sectioning allows to gather information of individual cells in trapped cell clusters inside the chamber. We demonstrate real-time monitoring of osmosis in A549 lung cells and red blood cells as one possible biomedical application. The observed osmosis reduced the cell membrane diameter by approximately 4 µm in the A549 cells and by approximately 2 µm in the red blood cells. Our approach provides an important optical tool for future investigations of cell functions and cell-cell interactions avoiding wall-contact inside an acoustofluidic device.


Subject(s)
Erythrocytes , Humans , Erythrocytes/cytology , A549 Cells , Microfluidic Analytical Techniques/instrumentation , Acoustics , Microscopy, Fluorescence, Multiphoton/instrumentation , Equipment Design
2.
Eur J Pharm Biopharm ; 197: 114222, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38387850

ABSTRACT

Lipid nanoparticles (LNPs) employing ionizable lipids are the most advanced technology for delivery of RNA, most notably mRNA, to cells. LNPs represent well-defined core-shell particles with efficient nucleic acid encapsulation, low immunogenicity and enhanced efficacy. While much is known about the structure and activity of LNPs, less attention is given to the timing of LNP uptake, cytosolic transfer and protein expression. However, LNP kinetics is a key factor determining delivery efficiency. Hence quantitative insight into the multi-cascaded pathway of LNPs is of interest to elucidate the mechanism of delivery. Here, we review experiments as well as theoretical modeling of the timing of LNP uptake, mRNA-release and protein expression. We describe LNP delivery as a sequence of stochastic transfer processes and review a mathematical model of subsequent protein translation from mRNA. We compile probabilities and numbers obtained from time resolved microscopy. Specifically, live-cell imaging on single cell arrays (LISCA) allows for high-throughput acquisition of thousands of individual GFP reporter expression time courses. The traces yield the distribution of mRNA life-times, expression rates and expression onset. Correlation analysis reveals an inverse dependence of gene expression efficiency and transfection onset-times. Finally, we discuss why timing of mRNA release is critical in the context of codelivery of multiple nucleic acid species as in the case of mRNA co-expression or CRISPR/Cas gene editing.


Subject(s)
Nanoparticles , RNA , Transfection , RNA, Messenger/genetics , RNA, Messenger/metabolism , Kinetics , Nanoparticles/chemistry
3.
Lab Chip ; 23(7): 1886-1895, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36867426

ABSTRACT

Invasion of migrating cells into surrounding tissue plays a key role in cancer metastasis and immune response. In order to assess invasiveness, most in vitro invasion assays measure the degree to which cells migrate between microchambers that provide a chemoattractant gradient across a polymeric membrane with defined pores. However, in real tissue cells experience soft, mechanically deformable microenvironments. Here we introduce RGD-functionalized hydrogel structures that present pressurized clefts for invasive migration of cells between reservoirs maintaining a chemotactic gradient. Using UV-photolithography, equally spaced blocks of polyethylene glycol-norbornene (PEG-NB) hydrogels are formed, which subsequently swell and close the interjacent gaps. The swelling ratio and final contours of the hydrogel blocks were determined using confocal microscopy confirming a swelling induced closure of the structures. The velocity profile of cancer cells transmigrating through the clefts, which we name 'sponge clamp', is found to depend on the elastic modulus as well as the gap size between the swollen blocks. The 'sponge clamp' discriminates the invasiveness of two distinct cell lines, MDA-MB-231 and HT-1080. The approach provides soft 3D-microstructures mimicking invasion conditions in extracellular matrix.


Subject(s)
Hydrogels , Polyethylene Glycols , Hydrogels/chemistry , Polyethylene Glycols/chemistry , Microtechnology , Cell Line , Polymers
4.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555522

ABSTRACT

Having access to fluorescence lifetime, researchers can reveal in-depth details about the microenvironment as well as the physico-chemical state of the molecule under investigation. However, the high number of influencing factors might be an explanation for the strongly deviating values of fluorescent lifetimes for the same fluorophore reported in the literature. This could be the reason for the impression that inconsistent results are obtained depending on which detection and excitation scheme is used. To clarify this controversy, the two most common techniques for measuring fluorescence lifetimes in the time-domain and in the frequency-domain were implemented in one single microscopy setup and applied to a variety of fluorophores under different environmental conditions such as pH-value, temperature, solvent polarity, etc., along with distinct state forms that depend, for example, on the concentration. From a vast amount of measurement results, both setup- and sample-dependent parameters were extracted and represented using a single display form, the phasor-plot. The measurements showed consistent results between the two techniques and revealed which of the tested parameters has the strongest influence on the fluorescence lifetime. In addition, quantitative guidance as to which technique is most suitable for which research task and how to perform the experiment properly to obtain consistent fluorescence lifetimes is discussed.


Subject(s)
Fluorescent Dyes , Microscopy, Fluorescence/methods , Fluorescent Dyes/chemistry
5.
Biomed Opt Express ; 10(9): 4516-4530, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31565507

ABSTRACT

We present a two-color two-photon stimulated emission depletion microscopy technique (2C2P-STED) that correlates a confocal image with a super-resolved image employing the inherent self-referencing mechanism of nonlinear excitation. The novel approach overcomes the substantial challenge posed by two different imaging modalities in laser-scanning fluorescence microscopy for colocalization on the nanometer scale. Demonstrating the principle of 2C2P-STED, we show for the first time super-resolved images of the gram-positive bacteria Streptococcus pneumoniae TIGR4 pilus type-1. A signal-to-noise ratio (SNR) greater than 10 was achieved in 2C2P excitation mode and approximately 70 nm details were resolved in 2P-STED.

SELECTION OF CITATIONS
SEARCH DETAIL
...