Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 80(23): 7316-23, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25239903

ABSTRACT

Methane production has been observed in a number of hypersaline environments, and it is generally thought that this methane is produced through the use of noncompetitive substrates, such as the methylamines, dimethylsulfide and methanol. Stable isotope measurements of the produced methane have also suggested that the methanogens are operating under conditions of substrate limitation. Here, substrate limitation in gypsum-hosted endoevaporite and soft-mat hypersaline environments was investigated by the addition of trimethylamine, a noncompetitive substrate for methanogenesis, and dried microbial mat, a source of natural organic matter. The δ(13)C values of the methane produced after amendments were compared to those in unamended control vials. At all hypersaline sites investigated, the δ(13)C values of the methane produced in the amended vials were statistically lower (by 10 to 71‰) than the unamended controls, supporting the hypothesis of substrate limitation at these sites. When substrates were added to the incubation vials, the methanogens within the vials fractionated carbon isotopes to a greater degree, resulting in the production of more (13)C-depleted methane. Trimethylamine-amended samples produced lower methane δ(13)C values than the mat-amended samples. This difference in the δ(13)C values between the two types of amendments could be due to differences in isotope fractionation associated with the dominant methane production pathway (or substrate used) within the vials, with trimethylamine being the main substrate used in the trimethylamine-amended vials. It is hypothesized that increased natural organic matter in the mat-amended vials would increase fermentation rates, leading to higher H2 concentrations and increased CO2/H2 methanogenesis.


Subject(s)
Gene Expression Regulation, Enzymologic , Geologic Sediments/microbiology , Methane/metabolism , Methylamines/metabolism , Allyl Compounds , Carbon Dioxide/metabolism , Carbon Isotopes/metabolism , Hydrogen/metabolism , Isotope Labeling , Sulfides
2.
Water Sci Technol ; 70(6): 980-9, 2014.
Article in English | MEDLINE | ID: mdl-25259485

ABSTRACT

Photosynthetic oxidation ponds are a low-cost method for secondary treatment of wastewater using natural and more energy-efficient aeration strategies. Methane (CH(4)) is produced during the anaerobic digestion of organic matter, but only some of it is oxidized in the water column, with the remaining CH(4) escaping into the atmosphere. In order to characterize the CH(4) flux in two photosynthetic oxidation ponds in a wastewater treatment plant in northern California, the isotopic compositions and concentrations of CH(4) were measured in the water column, in bubbles and in flux chambers, over a period of 12 to 21 months to account for seasonal trends in CH(4) emissions. Methane flux varied seasonally throughout the year, with an annual average flux of 5.5 g CH(4) m⁻² d⁻¹ Over half of the CH(4) flux, 56.1-74.4% v/v, was attributed to ebullition. The oxidation efficiency of this system was estimated at 69.1%, based on stable carbon isotopes and a calculated fractionation factor of 1.028. This is the first time, to our knowledge, that a fractionation factor for CH(4) oxidation has been empirically determined for oxidation ponds. Quantifying CH(4) emissions from these systems is essential to properly identify their contribution and to mitigate their impact on global warming.


Subject(s)
Methane/chemistry , Photosynthesis/physiology , Ponds/chemistry , Wastewater/chemistry , Atmosphere , Carbon Isotopes , Oxidation-Reduction , Waste Disposal Facilities
3.
J Vasc Access ; 13(3): 351-6, 2012.
Article in English | MEDLINE | ID: mdl-22307471

ABSTRACT

Vascular access for the infusion of medications and solutions requires timely assessment, planning, insertion, and assessment. Traditional vascular access is reactive, painful, and ineffective, often resulting in the exhaustion of peripheral veins prior to consideration of other access options. Evidence suggests clinical pathways improve outcomes by reducing variations and establishing processes to assess and coordinate care, minimizing fragmentation and cost. Implementation of a vascular access clinical pathway leads to the intentional selection of the best vascular access device for the patient specific to the individual diagnosis, treatment plan, current medical condition, and the patient's vessel health (1). The Vessel Health and Preservation (VHP) programme incorporates evidence-based practices focused on timely, intentional proactive device selection implemented within 24 hours of admission into any acute facility. VHP is an all-inclusive clinical pathway, guiding clinicians from device selection through patient discharge, including daily assessment. Initiation of the VHP programme within a facility provides a systematic pathway to improve vascular access selection and patient care, allowing for the reduction of variations and roadblocks in care while increasing positive patient outcomes and satisfaction. Patient safety and preservation of vessel health is the ultimate goal.


Subject(s)
Catheterization, Central Venous/instrumentation , Catheters, Indwelling , Central Venous Catheters , Critical Pathways , Algorithms , Catheterization, Central Venous/adverse effects , Equipment Design , Evidence-Based Medicine , Humans , Patient Safety , Patient Satisfaction , Patient Selection , Program Development , Treatment Outcome
4.
Astrobiology ; 12(2): 89-97, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22248383

ABSTRACT

Motivated by the increasingly abundant evidence for hypersaline environments on Mars and reports of methane in its atmosphere, we examined methanogenesis in hypersaline ponds in Baja California Sur, Mexico, and in northern California, USA. Methane-rich bubbles trapped within or below gypsum/halite crusts have δ¹³C values near -40‰. Methane with these relatively high isotopic values would typically be considered thermogenic; however, incubations of crust samples resulted in the biological production of methane with similar isotopic composition. A series of measurements aimed at understanding the isotopic composition of methane in hypersaline systems was therefore undertaken. Methane production rates, as well as the concentrations and isotopic composition of the particulate organic carbon (POC), were measured. Methane production was highest from microbial communities living within gypsum crusts, whereas POC content at gypsum/halite sites was low, generally less than 1% of the total mass. The isotopic composition of the POC ranged from -26‰ to -10‰. To determine the substrates used by the methanogens, ¹³C-labeled methylamines, methanol, acetate, and bicarbonate were added to individual incubation vials, and the methane produced was monitored for ¹³C content. The main substrates used by the methanogens were the noncompetitive substrates, the methylamines, and methanol. When unlabeled trimethylamine (TMA) was added to incubating gypsum/halite crusts in increasing concentrations, the isotopic composition of the methane produced became progressively lower; the lowest methane δ¹³C values occurred when the most TMA was added (1000 µM final concentration). This decrease in the isotopic composition of the methane produced with increasing TMA concentrations, along with the high in situ methane δ¹³C values, suggests that the methanogens within the crusts are operating at low substrate concentrations. It appears that substrate limitation is decreasing isotopic fractionation during methanogenesis, which results in these abnormally high biogenic methane δ¹³C values.


Subject(s)
Ecosystem , Methane/biosynthesis , Salinity , California , Mexico
5.
Astrobiology ; 9(4): 383-90, 2009 May.
Article in English | MEDLINE | ID: mdl-19400733

ABSTRACT

The importance of hypersaline environments over geological time, the discovery of similar habitats on Mars, and the importance of methane as a biosignature gas combine to compel an understanding of the factors important in controlling methane released from hypersaline microbial mat environments. To further this understanding, changes in stable carbon isotopes of methane and possible methanogenic substrates in microbial mat communities were investigated as a function of salinity here on Earth. Microbial mats were sampled from four different field sites located within salterns in Baja California Sur, Mexico. Salinities ranged from 50 to 106 parts per thousand (ppt). Pore water and microbial mat samples were analyzed for the carbon isotopic composition of dissolved methane, dissolved inorganic carbon (DIC), and mat material (particulate organic carbon or POC). The POC delta(13)C values ranged from -6.7 to -13.5 per thousand, and DIC delta(13)C values ranged from -1.4 to -9.6 per thousand. These values were similar to previously reported values. The delta(13)C values of methane ranged from -49.6 to -74.1 per thousand; the methane most enriched in (13)C was obtained from the highest salinity area. The apparent fractionation factors between methane and DIC, and between methane and POC, within the mats were also determined and were found to change with salinity. The apparent fractionation factors ranged from 1.042 to 1.077 when calculated using DIC and from 1.038 to 1.068 when calculated using POC. The highest-salinity area showed the least fractionation, the moderate-salinity area showed the highest fractionation, and the lower-salinity sites showed fractionations that were intermediate. These differences in fractionation are most likely due to changes in the dominant methanogenic pathways and substrates used at the different sites because of salinity differences.


Subject(s)
Cyanobacteria/metabolism , Environmental Microbiology , Methane/biosynthesis , Salinity , Carbon Isotopes/metabolism
6.
Environ Microbiol ; 10(2): 386-94, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18177370

ABSTRACT

Methanogenesis was characterized in hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico both in situ and after long-term manipulation in a greenhouse environment. Substrate addition experiments indicate methanogenesis to occur primarily through the catabolic demethylation of non-competitive substrates, under field conditions. However, evidence for the coexistence of other metabolic guilds of methanogens was obtained during a previous manipulation of sulfate concentrations. To fully characterize methanogenesis in these mats, in the absence of competition for reducing equivalents with sulfate-reducing microorganisms, we maintained microbial mats for longer than 1 year under conditions of lowered sulfate and salinity levels. The goal of this study was to assess whether observed differences in methane production during sulfate and salinity manipulation were accompanied by shifts in the composition of methanogen communities. Culture-independent techniques targeting methyl coenzyme M reductase genes (mcrA) were used to assess the dynamics of methanogen assemblages. Clone libraries from mats sampled in situ or maintained at field-like conditions in the greenhouse were exclusively composed of sequences related to methylotrophic members of the Methanosarcinales. Increases in pore water methane concentrations under conditions of low sulfate correlated with an observed increase in the abundance of putatively hydrogenotrophic mcrA, related to Methanomicrobiales. Geochemical and molecular data provide evidence of a significant shift in the metabolic pathway of methanogenesis from a methylotroph-dominated system in high-sulfate environments to a mixed community of methylotrophic and hydrogenotrophic methanogens under low sulfate conditions.


Subject(s)
Ecosystem , Methane/metabolism , Methanomicrobiales/growth & development , Methanosarcinales/growth & development , Oxidoreductases/genetics , Sodium Chloride/metabolism , Sulfates/metabolism , Cloning, Molecular , Geologic Sediments/microbiology , Methanomicrobiales/classification , Methanomicrobiales/enzymology , Methanomicrobiales/genetics , Methanosarcinales/classification , Methanosarcinales/enzymology , Methanosarcinales/genetics , Mexico , Molecular Sequence Data , Phylogeny , Seawater/microbiology , Sequence Analysis, DNA , Sodium Chloride/pharmacology , Sulfates/pharmacology , Time Factors
7.
Ground Water ; 42(3): 384-9, 2004.
Article in English | MEDLINE | ID: mdl-15161155

ABSTRACT

Adverse impacts on the health of some fish populations, such as skewed sex distributions, have been noted in surface waters and in laboratory experiments with relatively low concentrations (above 25 ng/L) of natural estrogen (17 beta-estradiol--E2). Sources of E2 to surface and ground waters can include avian, human, and mammalian waste products. The Ozark Plateau Aquifer (OPA) is a karstic basin that receives a significant portion of its water through losing reaches of rivers. Thus, there is a direct connection between surface water and ground water. The OPA was targeted for an E2 study to assess the potential for adverse health effects to aquatic organisms living in the system. Eight springs, which drain the aquifer, were sampled quarterly. The concentrations of E2 in the OPA ranged from 13 to 80 ng/L. For any one sampling event, the concentrations of E2 at the spring waters were statistically similar; however, the concentrations of E2 at all springs varied throughout the year. At Maramec Spring, one of the larger springs, the E2 concentration, was correlated with discharge. Based on the correlation between discharge and E2 concentration, aquatic organisms living in the plateau or in its discharged waters, including the threatened southern cavefish T. subterraneus, are exposed to concentration of E2 above 25 ng/L approximately 60% of the time. This implies that organisms living in karst basins throughout the OPA are likely exposed to E2 concentrations that may adversely impact their reproductive success for a significant portion of each year.


Subject(s)
Environmental Exposure , Estradiol/adverse effects , Estradiol/analysis , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/analysis , Water Supply , Animals , Conservation of Natural Resources , Environmental Monitoring , Enzyme-Linked Immunosorbent Assay , Fishes , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...