Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Phys Chem Lett ; 15(24): 6279-6285, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38848253

ABSTRACT

There is a large experimental and theoretical literature on the angular momentum fine structure of the lowest energy exciton in InP-based quantum dots. This literature is highly contradictory, and no clear picture of the fine structure accounting for all these results is available. This paper presents a quantitative analysis of recently published luminescence anisotropy results and presents an analysis of the different proposed fine structure models that compares radiative lifetimes calculated from those models with experimental values. These analyses show that the lowest energy (dark) state is the mj = ±2 state and the lowest energy bright state is a vibronically allowed phonon level. The splittings between the ±2/±1L states and the ±1U/0U states are the same, about 28 meV. We also find that the manifold of J = 1 states is about 60 meV above the manifold of J = 2 states.

2.
J Chem Phys ; 159(13)2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37787140

ABSTRACT

InP-based quantum dots (QDs) have Stokes shifts and photoluminescence (PL) line widths that are larger than in II-VI semiconductor QDs with comparable exciton energies. The mechanisms responsible for these spectral characteristics are investigated in this paper. Upon comparing different semiconductors, we find the Stokes shift decreases in the following order: InP > CdTe > CdSe. We also find that the Stokes shift decreases with core size and decreases upon deposition of a ZnSe shell. We suggest that the Stokes shift is largely due to different absorption and luminescent states in the angular momentum fine structure. The energy difference between the fine structure levels, and hence the Stokes shifts, are controlled by the electron-hole exchange interaction. Luminescence polarization results are reported and are consistent with this assignment. Spectral widths are controlled by the extent of homogeneous and inhomogeneous broadening. We report PL and PL excitation (PLE) spectra that facilitate assessing the roles of homogeneous and different inhomogeneous broadening mechanisms in the spectra of zinc-treated InP and InP/ZnSe/ZnS particles. There are two distinct types of inhomogeneous broadening: size inhomogeneity and core-shell interface inhomogeneity. The latter results in a distribution of core-shell band offsets and is caused by interfacial dipoles associated with In-Se or P-Zn bonding. Quantitative modeling of the spectra shows that the offset inhomogeneity is comparable to but somewhat smaller than the size inhomogeneity. The combination of these two types of inhomogeneity also explains several aspects of reversible hole trapping dynamics involving localized In3+/VZn2- impurity states in the ZnSe shells.

3.
J Phys Chem Lett ; 13(51): 11942-11945, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36579438

ABSTRACT

A recent Letter in this Journal (Langhals and Schlücker, J. Phys. Chem. Lett. 202213, 7568-7573) reported a dependence of the fluorescence lifetime of a dye on concentration and attributed it to "electromagnetic interactions with distant resonating structures" on a length scale of more than 100 nm. We show that their results can be explained as a straightforward result of absorption and re-emission of the fluorescence ("radiative energy transport"), which lengthens the apparent lifetime at higher concentrations. This effect has been well-documented in the literature many times. We show that simulations of the fluorescence decays accounting for radiative transport can reproduce the authors' results without postulating any new electromagnetic mechanism.


Subject(s)
Fluorescent Dyes , Fluorescence
4.
J Chem Phys ; 157(17): 174701, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36347684

ABSTRACT

Density functional theory calculations are combined with time-resolved photoluminescence experiments to identify the species responsible for the reversible trapping of holes following photoexcitation of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) having excess indium in the shell [P. Cavanaugh et al., J. Chem. Phys. 155, 244705 (2021)]. Several possible assignments are considered, and a substitutional indium adjacent to a zinc vacancy, In3+/VZn 2-, is found to be the most likely. This assignment is consistent with the observation that trapping occurs only when the QD has excess indium and is supported by experiments showing that the addition of zinc oleate or acetate decreases the extent of trapping, presumably by filling some of the vacancy traps. We also show that the addition of alkyl carboxylic acids causes increased trapping, presumably by the creation of additional zinc vacancies. The calculations show that either a single In2+ ion or an In2+-In3+ dimer is much too easily oxidized to form the reversible traps observed experimentally, while In3+ is far too difficult to oxidize. Additional experimental data on InP/ZnSe/ZnS QDs synthesized in the absence of chloride demonstrates that the reversible traps are not associated with Cl-. However, a zinc vacancy adjacent to a substitutional indium is calculated to have its highest occupied orbitals about 1 eV above the top of the valence band of bulk ZnSe, in the appropriate energy range to act as reversible traps for quantum confined holes in the InP valence band. The associated orbitals are predominantly composed of p orbitals on the Se atoms adjacent to the Zn vacancy.

5.
J Chem Phys ; 156(5): 054703, 2022 Feb 07.
Article in English | MEDLINE | ID: mdl-35135281

ABSTRACT

Transient absorption (TA) and time-resolved photoluminescence (PL) spectroscopies have been used to elucidate the hole tunneling and Auger dynamics in biexcitons and negative trions in high-quality InP/ZnSe/ZnS quantum dots (QDs). In a previous paper [Nguyen et al., J. Phys. Chem. C 125, 15405-15414 (2021)], we showed that under high-intensity photoexcitation, two types of biexcitons are formed: those having two conduction band electrons and two valence band holes (designated as an XX state) and those having two conduction band electrons, one valence band hole, and an additional trapped hole (designated as an XT state). In the present paper, we show that both types of biexcitons can undergo Auger processes, with those of the XT state being a factor of four to five slower than those of the XX state. In addition, the trapped holes can undergo tunneling into the valence band, converting an XT state to an XX state. The relative amplitudes of the fast (XX) and slow (XT) components are different in the TA and PL kinetics, and these differences can be quantitatively understood in terms of oscillator strengths and electron-hole overlap integrals of each state. XT to XX hole tunneling rates are obtained from the comparison of the XT state lifetimes with those of the negative trions. This comparison shows that the tunneling times decrease with decreasing core size and shell thickness. These times are about 2 ns for the thinnest shell red-emitting QDs and decrease to 330 ps for QDs that luminesce in the yellow.

6.
J Chem Phys ; 155(24): 244705, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34972380

ABSTRACT

We have used time-correlated single photon counting to elucidate the radiative dynamics of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) that differ in the amount and distribution of excess indium. Stoichiometric QDs having an In:P atom ratio very near unity exhibit simple luminescence kinetics. The photoluminescence (PL) rises with the 40 ps instrument response function and exhibits a decay that is close to a single exponential with a time constant that decreases from 32 to 28 ns with increasing shell thickness. QDs having excess indium (In:P ratio of 1.15-1.63) show a significant component of a slower rise time assigned to transient population of indium-based hole traps in the ZnSe shell. They also have a slower PL decay, attributed to an equilibrium between these traps, which are optically dark, and the emissive valence-band state. This results in a radiative lifetime that increases from 32 to 48 ns with increasing shell thickness. Different treatments of the InP cores prior to shell deposition result in different core/shell interfaces as indicated by resonance Raman spectroscopy, as well as differences in the amplitude and timescale of the slow PL rise and the PL decay time. These are interpreted in terms of different radial distributions of the indium-based hole traps, which can be related to differences in the interfacial lattice strain.

7.
J Phys Chem Lett ; 9(15): 4160-4165, 2018 Aug 02.
Article in English | MEDLINE | ID: mdl-29991256

ABSTRACT

Transient absorption (TA) and time-resolved photoluminescence (PL) spectroscopies have been used to provide direct spectroscopic evidence for the recently reported phenomenon of thermal "surface charging" in II-VI quantum dots (QDs). In these studies, zincblende CdSe cores are synthesized by standard methods, and a thin CdS shell deposited by the decomposition of Cd(DDTC)2, resulting in core/shell QDs with chalcogenide-rich surfaces. Following ligand exchange with oleylamine, these QDs have empty low-lying surface states that can be thermally populated from the valence band. At room temperature, the surface charging equilibrium results in some fraction of the particles having a hole in the valence band, i.e., the surface acceptor states make the particle p-type. Photoexcitation of the surface charged state results in what is essentially a positive trion, which can undergo a fast Auger recombination. Both PL and TA (bleach recovery) kinetics of the CdSe/CdS QDs show a 70 ps decay component, which is assigned to Auger recombination. The empty nonbonding surface orbitals are passivated by ligation with a trialkylphosphine, and the fast decay component is absent when tributylphosphine is present. The comparison of the TA and PL kinetics shows that the relative amplitude of the 70 ps component is a factor of about 1.5 greater in the TA than in the PL. They also show that the fast component in the PL spectrum is shifted about 6 nm to the blue of the exciton luminescence. The above observations can be understood in terms of the trion versus exciton spectroscopy and strongly support the assignment of the 70 ps transient to the decay of a trion formed from the surface charged state.

8.
J Chem Phys ; 147(22): 224702, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29246046

ABSTRACT

Resonance Raman excitation profiles have been measured for the longitudinal optical phonon in two sizes of CdS quantum dots and in CdSe/CdS core/shell quantum dots. In pure CdS, the resonance Raman cross section for the fundamental transition is sharply peaked around the lowest-energy excitonic transition and becomes weaker with higher-energy excitation even though the absorbance continues to increase to higher energies. This effect, also observed in earlier studies of CdSe quantum dots, is attributed largely to interferences among multiple excitonic transitions contributing to the resonance Raman polarizability. No variation in exciton-phonon coupling strength with exciton energy is required to explain the decrease in the ratio of the Raman cross section to absorption cross section at shorter wavelengths. In core/shell structures, the CdSe phonons are relatively strong when exciting on resonance with the lower excitonic transitions, in which the hole is largely localized to the CdSe core, but become nearly undetectable at excitation wavelengths >0.6 eV above the lowest exciton, where both electrons and holes are largely localized in the CdS shell. The CdS phonon Raman cross section exhibits a maximum 0.6-0.7 eV above the lowest exciton and then decreases at higher energies for the same reasons as in pure CdS.

9.
J Phys Chem Lett ; 8(20): 5113-5118, 2017 Oct 19.
Article in English | MEDLINE | ID: mdl-28972776

ABSTRACT

The spectroscopic and photophysical similarities and differences between charge trapping by surface ligands on CdSe quantum dots and charge delocalization into the shell in excited CdSe core/shell nanocrystals are discussed. Optical absorption and resonance Raman spectroscopies are used to study small CdSe quantum dots coated with organic ligands that accept electrons (methyl viologen) or holes (phenothiazine, 4-methylbenzenethiol), as well as with semiconductor shells that delocalize electrons (CdS) or holes (CdTe). The organic ligands have only a small effect on the optical absorption spectrum and contribute negligibly to the resonance Raman spectra, indicating little participation of ligand orbitals in the initial excitation. The semiconductor shells more strongly red-shift the absorption spectrum by delocalizing the electron and/or hole into the shell, and vibrations of the shell appear in the resonance Raman spectrum, showing that the shell is involved in the vertical excitation. The qualitative differences between ligand and semiconductor shells are discussed in terms of the energetics and coupling strengths.

10.
J Phys Chem Lett ; 8(3): 626-630, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28107015

ABSTRACT

Zinc to cadmium cation exchange of ZnSe quantum dots has been used to produce a series of alloyed Zn1-xCdxSe quantum dots. As x increases and the lowest-energy exciton shifts to the red, the peak initially broadens and then sharpens as x approaches 1. Resonance Raman spectra obtained with excitation near the lowest excitonic absorption peak show a gradual shift of the longitudinal optical phonon peak from 251 cm-1 in pure ZnSe to 210 cm-1 in nearly pure CdSe with strong broadening at intermediate compositions. The LO overtone to fundamental intensity ratio, a rough gauge of exciton-phonon coupling strength, increases considerably for intermediate compositions compared with those of either pure ZnSe or pure CdSe. The results indicate that partial localization of the hole in locally Cd-rich regions of the alloyed particles increases the strengths of local internal electric fields, increasing the coupling between the exciton and polar optical phonons.

11.
ACS Nano ; 10(3): 3755-65, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-26895220

ABSTRACT

The role of interface sharpness in controlling the excited state dynamics in CdSe/ZnSe core/shell particles is examined here. Particles composed of CdSe/ZnSe with 2.4-4.0 nm diameter cores and approximately 4 monolayer shells are synthesized at relatively low temperature, ensuring a sharp core-shell interface. Subsequent annealing results in cadmium and zinc interdiffusion, softening the interface. TEM imaging and absorption spectra reveal that annealing results in no change in the particle sizes. Annealing results in a 5-10 nm blue shift in the absorption spectrum, which is compared to calculated spectral shifts to characterize the extent of metal interdiffusion. The one- and two-photon dynamics are measured using time-resolved absorption spectroscopy. We find that biexcitons undergo biexponential decays, with fast and slow decay times differing by about an order of magnitude. The relative magnitudes of the fast and slow components depend on the sharpness of the core-shell interface, with larger fast component amplitudes associated with a sharp core-shell interface. The slow component is assigned to Auger recombination of band edge carriers and the fast decay component to Auger recombination of holes that are trapped in defects produced by lattice strain. Annealing of these particles softens the core-shell interface and thereby reduces the amount of lattice strain and diminishes the magnitude of the fast decay component. The time constant of the slow biexciton Auger recombination component changes only slightly upon softening of the core-shell interface.

12.
ACS Nano ; 9(10): 10471-81, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26372423

ABSTRACT

The two-photon photochemistry of CdSe quantum dots (QDs) has been systematically studied. We find that upon intense irradiation CdSe quantum dots that absorb two or more visible photons undergo photodarkening. The quantum yield for this process is on the order of 6% in chloroform and much smaller in nonpolar solvents, such as octane. An analysis of the energetics indicates that, following two-photon excitation, the biexciton undergoes an Auger process producing a hot hole. This hot hole is ejected to a surface-bound TOP ligand, forming a QD(-)/TOP(+) contact ion pair that separates in chloroform, but not in octane. The charged and deligated QD is dark, resulting in the overall photodarkening. This photodarkening reaction may or may not be reversible, depending on what other chemical components are in the irradiated solution. The quantum dot concentration dependence and PL decay kinetics indicate that charge recombination occurs rapidly, followed by ligand reattachment and reorganization on a longer (tens of minutes) time scale. The relation of this mechanism to one-photon photochemistry is also discussed.

13.
J Phys Chem Lett ; 6(9): 1559-62, 2015 May 07.
Article in English | MEDLINE | ID: mdl-26263313

ABSTRACT

The effects of lattice strain on the spectroscopy and photoluminescence quantum yields of zincblende CdSe/CdS core/shell quantum dots are examined. The quantum yields are measured as a function of core size and shell thickness. High quantum yields are achieved as long as the lattice strain energy density is below ~0.85 eV/nm(2), which is considerably greater than the limiting value of 0.59 eV/nm(2) for thermodynamic stability of a smooth, defect-free shell, as previously reported (J. Chem. Phys. 2014, 141, 194704). Thus, core/shell quantum dots having strain energy densities between 0.59 and 0.85 eV/nm(2) can have very high PL QYs but are metastable with respect to surface defect formation. Such metastable core/shell QDs can be produced by shell deposition at comparatively low temperatures (<140 °C). Annealing of these particles causes partial loss of core pressure and a red shift of the spectrum.

14.
ACS Nano ; 9(8): 8131-41, 2015 Aug 25.
Article in English | MEDLINE | ID: mdl-26213123

ABSTRACT

Resonance Raman spectra and excitation profiles have been measured and semiquantitatively modeled for core/shell quantum dots consisting of 2.7 nm diameter zincblende CdSe cores and thin (0.5 nm) or thick (1.6 nm) CdS shells. The Raman spectra show previously reported trends of increased peak frequency for both the CdSe and the CdS longitudinal optical (LO) phonons with increasing shell thickness. We also find a strong dependence of the peak CdS frequency on excitation energy and a large discrepancy between the experimental frequency of the CdSe + CdS combination band and the sum of the corresponding fundamental frequencies. This suggests that the dominant transitions at high excitation energies are localized on either the CdSe core or the CdS shell and thereby cannot enhance combination band transitions between core and shell. The CdS to CdSe Raman intensity ratios at high excitation energies further support this picture. The electron-phonon coupling for the CdSe LO phonon in the lowest excitonic transition is slightly weaker in the core/shell structures than in pure CdSe quantum dots, contrary to expectations for the Fröhlich coupling mechanism. Possible explanations for this discrepancy are discussed.

15.
J Chem Phys ; 141(19): 194704, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25416902

ABSTRACT

Lattice mismatch in core/shell nanoparticles occurs when the core and shell materials have different lattice parameters. When there is a significant lattice mismatch, a coherent core-shell interface results in substantial lattice strain energy, which can affect the shell morphology. The shell can be of uniform thickness or can be rough, having thin and thick regions. A smooth shell minimizes the surface energy at the expense of increased lattice strain energy and a rough shell does the opposite. A quantitative treatment of the lattice strain energy in determining the shell morphology of CdSe/CdS core/shell nanoparticles is presented here. We use the inhomogeneity in hole tunneling rates through the shell to adsorbed hole acceptors to quantify the extent of shell thickness inhomogeneity. The results can be understood in terms of a model based on elastic continuum calculations, which indicate that the lattice strain energy depends on both core size and shell thickness. The model assumes thermodynamic equilibrium, i.e., that the shell morphology corresponds to a minimum total (lattice strain plus surface) energy. Comparison with the experimental results indicates that CdSe/CdS nanoparticles undergo an abrupt transition from smooth to rough shells when the total lattice strain energy exceeds about 27 eV or the strain energy density exceeds 0.59 eV/nm(2). We also find that the predictions of this model are not followed for CdSe/CdS nanoparticles when the shell is deposited at very low temperature and therefore equilibrium is not established.

16.
ACS Nano ; 8(4): 3928-38, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24654788

ABSTRACT

The origin of the ubiquitous low-frequency shoulder on the longitudinal optical (LO) phonon fundamental in the Raman spectra of CdSe quantum dots is examined. This feature is usually assigned as a "surface optical" (SO) phonon, but it is only slightly affected by modifying the surface through exchanging ligands or adding a semiconductor shell. Here we present excitation profile data showing that the low-frequency shoulder loses intensity as the excitation is tuned to longer wavelengths, closer to resonance with the lowest-energy 1Se-1S3/2 excitonic transition. Calculations of the resonance Raman spectra are carried out using a fully atomistic model with an empirical force field to calculate the phonon modes and the standard effective mass approximation envelope function model to calculate the electron and hole wave functions. When a force field of the Tersoff type is used, the calculated spectra closely resemble the experimental ones in showing mainly the higher-frequency LO phonon with 1Se-1S3/2 resonance but showing intensity in lower-frequency features with 1Pe-1P3/2 resonance. These calculations indicate that the main LO phonon peak involves largely motion of the interior atoms, while the low-frequency shoulder is more equally distributed throughout the crystal but not surface-localized. Interestingly, very different results are obtained with the widely used Coulomb plus Lennard-Jones force field developed by Rabani, which predicts far more disordered structures and more localized phonon modes for the nanocrystals compared with the Tersoff-type potential.

17.
J Chem Phys ; 139(2): 024702, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23862954

ABSTRACT

Resonance Raman excitation profiles for the longitudinal optical (LO) phonon fundamental and its first overtone have been measured for organic ligand capped, wurtzite form CdSe nanocrystals of ∼3.2 nm diameter dissolved in chloroform. The absolute differential Raman cross-section for the fundamental is much larger when excited at 532 or 543 nm, on the high-frequency side of the lowest-wavelength absorption maximum, than for excitation in the 458-476 nm range although the absorbance is higher at the shorter wavelengths. That is, the quantum yield for resonance Raman scattering is reduced for higher-energy excitation. In contrast, the photoluminescence quantum yield is relatively constant with wavelength. The optical absorption spectrum and the resonance Raman excitation profiles and depolarization dispersion curves are reproduced with a model for the energies, oscillator strengths, electron-phonon couplings, and dephasing rates of the multiple low-lying electronic excitations. The Huang-Rhys factor for LO phonon in the lowest excitonic transition is found to lie in the range S = 0.04-0.14. The strong, broad absorption feature about 0.5 eV above the lowest excitonic peak, typically labeled as the 1P3∕21Pe transition, is shown to consist of at least two significant components that vary greatly in the magnitude of their electron-phonon coupling.


Subject(s)
Cadmium Compounds/chemistry , Nanoparticles/chemistry , Selenium Compounds/chemistry , Luminescence , Spectrum Analysis, Raman
18.
Nano Lett ; 11(10): 4067-73, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21916485

ABSTRACT

The dynamics of biexcitons in CdSe nanoparticles are examined as a function of the magnitudes of internal electric fields. We show that the presence of strong internal fields results in rapid Auger recombination. The strengths of the electric fields and hence the Auger recombination rates are controlled in several different ways: specifically, by varying the dielectric constant of the surrounding solvent, by changing the particle surface stoichiometry and hence the magnitude of surface charges, and by inducing a piezoelectric field through the deposition of a lattice-mismatched shell material. Auger recombination is a momentum forbidden process. Fourier transformation of calculated spatial wave functions shows that higher conduction band states have large momentum components that relax the momentum conservation constraints. Relative Auger recombination times depend upon the extent to which the internal electric fields mix conduction band levels, which is easily calculated. Comparison with calculations of valence band states suggests that the excited particle in biexciton Auger recombination is the other electron. The experimental results can therefore be understood in terms of mixing of higher conduction band states with the lowest state from which recombination occurs.

19.
ACS Nano ; 4(3): 1561-72, 2010 Mar 23.
Article in English | MEDLINE | ID: mdl-20192241

ABSTRACT

The dynamics of the CdSe nanorod synthesis reaction have been studied, giving attention to the kinetics of magic-sized clusters (MSCs) that form as intermediates in the overall reaction. The MSCs have a distinct absorption peak, and the kinetics of this peak give insight into the overall reaction mechanism. In these studies, the reaction mixture consists primarily of Cd(phosphonate)(2) and trioctyl phosphine selenium in a solution of trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO). We find that the rate at which precursors react to form CdSe monomers and the rates at which monomers react to form nanoparticles can be varied by changing the chemistry of the reaction mixture. Decreasing the TOP concentration decreases the extent to which selenium is bound, both in the precursors and on the particles' surfaces, and thereby increases both the precursor to monomer and monomer to particle reaction rates. Decreasing the phosphonate concentration decreases the extent to which phosphonate binds cadmium in the precursors and on the surface of the nanoparticles, also increasing the rates of both reactions. This is also accomplished by the addition of inorganic acids which protonate the phosphonates. The presence of inorganic acids (impurities) is the primary reason that the overall synthesis reaction is faster in solutions made with technical grade rather than purified TOPO. The TOP and phosphonic acid concentrations are coupled because excess phosphonic acids react with TOP, forming TOPO and less strongly binding species, specifically phosphinic acids, phosphine oxides, and phosphines.

20.
J Phys Chem B ; 110(50): 25259-65, 2006 Dec 21.
Article in English | MEDLINE | ID: mdl-17165970

ABSTRACT

The photophysics of mixed aggregates of GaSe/InSe nanoparticles have been studied using static and time-resolved absorption and emission spectroscopies. The results indicate that the GaSe/InSe interfaces form heterojunctions and exhibit photoinduced direct charge transfer from the GaSe valence band to the InSe conduction band. This results in the electrons and holes being localized separately in these two types of nanoparticles. The energy diagram of the nanoparticle heterojunction can be constructed from the static spectra, known bulk band offsets, and quantum confinement effects. These considerations accurately predict the energy of the observed charge-transfer band. Photoexcitation also produces excitons in the aggregates, away from the heterojunctions. These excitons can undergo diffusion and quench upon reaching a heterojunction. Time-resolved fluorescence kinetics can be modeled to extract an exciton diffusion coefficient. A value of 2.0 nm2/ns is obtained, which is in good agreement with values obtained from previous fluorescence anisotropy decay measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...