Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Adv Model Earth Syst ; 14(1): e2021MS002601, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35865216

ABSTRACT

The next-generation global climate model from the NASA Goddard Institute for Space Studies, GISS-E3, contains many improvements to resolution and physics that allow for improved representation of tropical cyclones (TCs) in the model. This study examines the properties of TCs in two different versions of E3 at different points in its development cycle, run for 20 years at 0.5° resolution, and compares these TCs with observations, the previous generation GISS model, E2, and other climate models. E3 shares many TC biases common to global climate models, such as having too few tropical cyclones, but is much improved from E2. E3 produces strong enough TCs that observation-based wind speed thresholds can now be used to detect and track them, and some storms now reach hurricane intensity; neither of these was true of E2. Model development between the first and second versions of E3 further increased the number and intensity of TCs and reduced TC count biases globally and in most regions. One-year sensitivity tests to changes in various microphysical and dynamical tuning parameters are also examined. Increasing the entrainment rate for the more strongly entraining plume in the convection scheme increases the number of TCs (though also affecting other climate variables, and in some cases increasing biases). Variations in divergence damping did not have a strong effect on simulated TC properties, contrary to expectations based on previous studies. Overall, the improvements in E3 make it more credible for studies of TC activity and its relationship to climate.

2.
J Geophys Res Atmos ; 126(5): e2020JD034108, 2021 Mar 16.
Article in English | MEDLINE | ID: mdl-34513547

ABSTRACT

Biophysical vegetation responses to elevated atmospheric carbon dioxide (CO2) affect regional hydroclimate through two competing mechanisms. Higher CO2 increases leaf area (LAI), thereby increasing transpiration and water losses. Simultaneously, elevated CO2 reduces stomatal conductance and transpiration, thereby increasing rootzone soil moisture. Which mechanism dominates in the future is highly uncertain, partly because these two processes are difficult to explicitly separate within dynamic vegetation models. We address this challenge by using the GISS ModelE global climate model to conduct a novel set of idealized 2×CO2 sensitivity experiments to: evaluate the total vegetation biophysical contribution to regional climate change under high CO2; and quantify the separate contributions of enhanced LAI and reduced stomatal conductance to regional hydroclimate responses. We find that increased LAI exacerbates soil moisture deficits across the sub-tropics and more water-limited regions, but also attenuates warming by ∼0.5-1°C in the US Southwest, Central Asia, Southeast Asia, and northern South America. Reduced stomatal conductance effects contribute ∼1°C of summertime warming. For some regions, enhanced LAI and reduced stomatal conductance produce nonlinear and either competing or mutually amplifying hydroclimate responses. In northeastern Australia, these effects combine to exacerbate radiation-forced warming and contribute to year-round water limitation. Conversely, at higher latitudes these combined effects result in less warming than would otherwise be predicted due to nonlinear responses. These results highlight substantial regional variation in CO2-driven vegetation responses and the importance of improving model representations of these processes to better quantify regional hydroclimate impacts.

3.
Geophys Res Lett ; 48(8): e2020GL091883, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-34149115

ABSTRACT

Many nations responded to the corona virus disease-2019 (COVID-19) pandemic by restricting travel and other activities during 2020, resulting in temporarily reduced emissions of CO2, other greenhouse gases and ozone and aerosol precursors. We present the initial results from a coordinated Intercomparison, CovidMIP, of Earth system model simulations which assess the impact on climate of these emissions reductions. 12 models performed multiple initial-condition ensembles to produce over 300 simulations spanning both initial condition and model structural uncertainty. We find model consensus on reduced aerosol amounts (particularly over southern and eastern Asia) and associated increases in surface shortwave radiation levels. However, any impact on near-surface temperature or rainfall during 2020-2024 is extremely small and is not detectable in this initial analysis. Regional analyses on a finer scale, and closer attention to extremes (especially linked to changes in atmospheric composition and air quality) are required to test the impact of COVID-19-related emission reductions on near-term climate.

4.
J Adv Model Earth Syst ; 12(8): e2019MS002025, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32999704

ABSTRACT

This paper describes the GISS-E2.1 contribution to the Coupled Model Intercomparison Project, Phase 6 (CMIP6). This model version differs from the predecessor model (GISS-E2) chiefly due to parameterization improvements to the atmospheric and ocean model components, while keeping atmospheric resolution the same. Model skill when compared to modern era climatologies is significantly higher than in previous versions. Additionally, updates in forcings have a material impact on the results. In particular, there have been specific improvements in representations of modes of variability (such as the Madden-Julian Oscillation and other modes in the Pacific) and significant improvements in the simulation of the climate of the Southern Oceans, including sea ice. The effective climate sensitivity to 2 × CO2 is slightly higher than previously at 2.7-3.1°C (depending on version) and is a result of lower CO2 radiative forcing and stronger positive feedbacks.

5.
Astrophys J ; 884(1)2019 Oct 10.
Article in English | MEDLINE | ID: mdl-33100349

ABSTRACT

The potential habitability of known exoplanets is often categorized by a nominal equilibrium temperature assuming a Bond albedo of either ∼0.3, similar to Earth, or 0. As an indicator of habitability, this leaves much to be desired, because albedos of other planets can be very different, and because surface temperature exceeds equilibrium temperature due to the atmospheric greenhouse effect. We use an ensemble of general circulation model simulations to show that for a range of habitable planets, much of the variability of Bond albedo, equilibrium temperature and even surface temperature can be predicted with useful accuracy from incident stellar flux and stellar temperature, two known parameters for every confirmed exoplanet. Earth's Bond albedo is near the minimum possible for habitable planets orbiting G stars, because of increasing contributions from clouds and sea ice/snow at higher and lower instellations, respectively. For habitable M star planets, Bond albedo is usually lower than Earth's because of near-IR H2O absorption, except at high instellation where clouds are important. We apply relationships derived from this behavior to several known exoplanets to derive zeroth-order estimates of their potential habitability. More expansive multivariate statistical models that include currently non-observable parameters show that greenhouse gas variations produce significant variance in albedo and surface temperature, while increasing length of day and land fraction decrease surface temperature; insights for other parameters are limited by our sampling. We discuss how emerging information from global climate models might resolve some degeneracies and help focus scarce observing resources on the most promising planets.

6.
Article in English | MEDLINE | ID: mdl-32655188

ABSTRACT

The potential importance of longwave (LW) cloud scattering has been recognized but the actual estimate of this effect on thermal radiation varies greatly among different studies. General circulation models (GCMs) generally neglect or simplify the multiple scattering in the LW. In this study, we use a rigorous radiative transfer algorithm to explicitly consider LW multiple-scattering and apply the GCM to quantify the impact of cloud LW scattering on thermal radiation fluxes. Our study shows that the cloud scattering effect on downward thermal radiation at the surface is concentrated in the infrared atmospheric window spectrum (800-1250 cm-1). The scattering effect on the outgoing longwave radiation (OLR) is also present in the window region over low clouds but it is mainly in the far-infrared spectrum (300-600 cm-1) over high clouds. For clouds with small to moderate optical depth (τ < 10), the scattering effect on thermal fluxes shows large variation with the cloud τ and has a maximum at an optical depth of ~3. For opaque clouds, the scattering effect approaches an asymptote and is smaller and less important. The 2-stream radiative transfer scheme could have an error over 10% with an RMS error around 3.5%-4.0% in the calculated LW flux. This algorithm error of the 2-stream approximation could readily exceed the no-scattering error in the LW, and thus it is worthless to include the time-consuming computation of multiple scattering in a 2-stream radiative transfer scheme. However, the calculation error rapidly decreases as stream number increases and the RMS error in LW flux using the 4-stream scheme is under 0.3%, an accuracy sufficient for most climate studies. We implement the 4-stream discrete-ordinate algorithm in the GISS GCM and run the GCM for 20 years with and without the LW scattering effect, respectively. When cloud LW scattering is included, we find that the global annual mean OLR is reduced by 2.7 W/m2, and the downward surface flux and the net atmospheric absorption are increased by 1.6 W/m2 and 1.8 W/m2, respectively. Using one year of ISCCP clouds and running the standalone radiative transfer offline, the global annual mean non-scattering errors in OLR, surface LW downward flux and net atmospheric absorption are 3.6W/m2, -1.1 W/m2, and -2.5 W/m2, respectively. The global scattering impact of 2.7 W/m2 on the OLR is small when compared to the typical global OLR value of 240W/m2, but it is significant when compared to cloud LW radiative forcing (30W/m2) and net cloud forcing (-14W/m2). Overall, the effect of neglecting scattering on the thermal fluxes is comparable to the reported clear sky radiative effect of doubling CO2.

7.
Astrobiology ; 19(1): 99-125, 2019 01.
Article in English | MEDLINE | ID: mdl-30183335

ABSTRACT

The nearby exoplanet Proxima Centauri b will be a prime future target for characterization, despite questions about its retention of water. Climate models with static oceans suggest that Proxima b could harbor a small dayside surface ocean despite its weak instellation. We present the first climate simulations of Proxima b with a dynamic ocean. We find that an ocean-covered Proxima b could have a much broader area of surface liquid water but at much colder temperatures than previously suggested, due to ocean heat transport and/or depression of the freezing point by salinity. Elevated greenhouse gas concentrations do not necessarily produce more open ocean because of dynamical regime transitions between a state with an equatorial Rossby-Kelvin wave pattern and a state with a day-night circulation. For an evolutionary path leading to a highly saline ocean, Proxima b could be an inhabited, mostly open ocean planet with halophilic life. A freshwater ocean produces a smaller liquid region than does an Earth salinity ocean. An ocean planet in 3:2 spin-orbit resonance has a permanent tropical waterbelt for moderate eccentricity. A larger versus smaller area of surface liquid water for similar equilibrium temperature may be distinguishable by using the amplitude of the thermal phase curve. Simulations of Proxima Centauri b may be a model for the habitability of weakly irradiated planets orbiting slightly cooler or warmer stars, for example, in the TRAPPIST-1, LHS 1140, GJ 273, and GJ 3293 systems.


Subject(s)
Atmosphere , Climate , Models, Theoretical , Oceans and Seas , Planets , Exobiology , Greenhouse Gases , Water Movements
8.
Astrophys J Suppl Ser ; 239(2)2018 Dec.
Article in English | MEDLINE | ID: mdl-30948861

ABSTRACT

We present a large ensemble of simulations of an Earth-like world with increasing insolation and rotation rate. Unlike previous work utilizing idealized aquaplanet configurations we focus our simulations on modern Earth-like topography. The orbital period is the same as modern Earth, but with zero obliquity and eccentricity. The atmosphere is 1 bar N2-dominated with CO2=400 ppmv and CH4=1 ppmv. The simulations include two types of oceans; one without ocean heat transport (OHT) between grid cells as has been commonly used in the exoplanet literature, while the other is a fully coupled dynamic bathtub type ocean. The dynamical regime transitions that occur as day length increases induce climate feedbacks producing cooler temperatures, first via the reduction of water vapor with increasing rotation period despite decreasing shortwave cooling by clouds, and then via decreasing water vapor and increasing shortwave cloud cooling, except at the highest insolations. Simulations without OHT are more sensitive to insolation changes for fast rotations while slower rotations are relatively insensitive to ocean choice. OHT runs with faster rotations tend to be similar with gyres transporting heat poleward making them warmer than those without OHT. For slower rotations OHT is directed equator-ward and no high latitude gyres are apparent. Uncertainties in cloud parameterization preclude a precise determination of habitability but do not affect robust aspects of exoplanet climate sensitivity. This is the first paper in a series that will investigate aspects of habitability in the simulations presented herein. The datasets from this study are opensource and publicly available.

9.
J Geophys Res Atmos ; 123(21): 12017-12039, 2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30775192

ABSTRACT

Anthropogenic land use and land cover change is primarily represented in climate model simulations through prescribed transitions from natural vegetation to cropland or pasture. However, recent studies have demonstrated that land management practices, especially irrigation, have distinct climate impacts. Here we disentangle the seasonal climate impacts of land cover change and irrigation across areas of high agricultural intensity using climate simulations with three different land surface scenarios: (1) natural vegetation cover/no irrigation, (2) year 2000 crop cover/no irrigation, and (3) year 2000 crop cover and irrigation rates. We find that irrigation substantially amplifies land cover-induced climate impacts but has opposing effects across certain regions. Irrigation mostly causes surface cooling, which substantially amplifies land cover change-induced cooling in most regions except over Central, West, and South Asia, where it reverses land cover change-induced warming. Despite increases in net surface radiation in some regions, this cooling is associated with enhancement of latent relative to sensible heat fluxes by irrigation. Similarly, irrigation substantially enhances the wetting influence of land cover change over several regions including West Asia and the Mediterranean. The most notable contrasting impacts of these forcings on precipitation occur over South Asia, where irrigation offsets the wetting influence of land cover during the monsoon season. Differential changes in regional circulations and moist static energy induced by these forcings contribute to their precipitation impacts and are associated with differential changes in surface and tropospheric temperature gradients and moisture availability. These results emphasize the importance of including irrigation forcing to evaluate the combined impacts of land surface changes for attributing historical climatic changes and managing future impacts.

10.
Ocean Model (Oxf) ; 116: 1-15, 2017 Aug.
Article in English | MEDLINE | ID: mdl-31662703

ABSTRACT

Discretisation of the horizontal pressure gradient force in layered ocean models is a challenging task, with non-trivial interactions between the thermodynamics of the fluid and the geometry of the layers often leading to numerical difficulties. We present two new finite-volume schemes for the pressure gradient operator designed to address these issues. In each case, the horizontal acceleration is computed as an integration of the contact pressure force that acts along the perimeter of an associated momentum control-volume. A pair of new schemes are developed by exploring different control-volume geometries. Non-linearities in the underlying equation-of-state definitions and thermodynamic profiles are treated using a high-order accurate numerical integration framework, designed to preserve hydrostatic balance in a non-linear manner. Numerical experiments show that the new methods achieve high levels of consistency, maintaining hydrostatic and thermobaric equilibrium in the presence of strongly-sloping layer geometries, non-linear equations-of-state and non-uniform vertical stratification profiles. These results suggest that the new pressure gradient formulations may be appropriate for general circulation models that employ hybrid vertical coordinates and/or terrain-following representations.

11.
J Adv Model Earth Syst ; 8(3): 1345-1357, 2016 Sep.
Article in English | MEDLINE | ID: mdl-28966718

ABSTRACT

Weather and climate models struggle to represent lower tropospheric temperature and moisture profiles and surface fluxes in Arctic winter, partly because they lack or misrepresent physical processes that are specific to high latitudes. Observations have revealed two preferred states of the Arctic winter boundary layer. In the cloudy state, cloud liquid water limits surface radiative cooling, and temperature inversions are weak and elevated. In the radiatively clear state, strong surface radiative cooling leads to the build-up of surface-based temperature inversions. Many large-scale models lack the cloudy state, and some substantially underestimate inversion strength in the clear state. Here, the transformation from a moist to a cold dry air mass is modelled using an idealized Lagrangian perspective. The trajectory includes both boundary layer states, and the single-column experiment is the first Lagrangian Arctic air formation experiment (Larcform 1) organized within GEWEX GASS (Global atmospheric system studies). The intercomparison reproduces the typical biases of large-scale models: Some models lack the cloudy state of the boundary layer due to the representation of mixed-phase micro-physics or to the interaction between micro-and macrophysics. In some models, high emissivities of ice clouds or the lack of an insulating snow layer prevent the build-up of surface-based inversions in the radiatively clear state. Models substantially disagree on the amount of cloud liquid water in the cloudy state and on turbulent heat fluxes under clear skies. Observations of air mass transformations including both boundary layer states would allow for a tighter constraint of model behaviour.

12.
Geophys Res Lett ; 43(16): 8376-8383, 2016 Aug 28.
Article in English | MEDLINE | ID: mdl-28408771

ABSTRACT

Present-day Venus is an inhospitable place with surface temperatures approaching 750K and an atmosphere 90 times as thick as Earth's. Billions of years ago the picture may have been very different. We have created a suite of 3-D climate simulations using topographic data from the Magellan mission, solar spectral irradiance estimates for 2.9 and 0.715 Gya, present-day Venus orbital parameters, an ocean volume consistent with current theory, and an atmospheric composition estimated for early Venus. Using these parameters we find that such a world could have had moderate temperatures if Venus had a rotation period slower than ~16 Earth days, despite an incident solar flux 46-70% higher than Earth receives. At its current rotation period, Venus's climate could have remained habitable until at least 715 million years ago. These results demonstrate the role rotation and topography play in understanding the climatic history of Venus-like exoplanets discovered in the present epoch.

13.
Geophys Res Lett ; 42(13): 5485-5492, 2015 07 16.
Article in English | MEDLINE | ID: mdl-26937058

ABSTRACT

Radiation parameterizations in GCMs are more accurate than their predecessorsErrors in estimates of 4 ×CO2 forcing are large, especially for solar radiationErrors depend on atmospheric state, so global mean error is unknown.

SELECTION OF CITATIONS
SEARCH DETAIL
...