Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 11(1): 1558, 2020 Mar 25.
Article in English | MEDLINE | ID: mdl-32214090

ABSTRACT

In all known examples of metal-ligand (M-L) δ and φ bonds, the metal orbitals are aligned to the ligand orbitals in a "head-to-head" or "side-to-head" fashion. Here, we report two fundamentally new types of M-L δ and φ interactions; "head-to-side" δ and "side-to-side" φ back-bonding, found in complexes of metallacyclopropenes and metallacyclocumulenes of actinides (Pa-Pu) that makes them distinct from their corresponding Group 4 analogues. In addition to the known Th and U complexes, our calculations include complexes of Pa, Np, and Pu. In contrast with conventional An-C bond decreasing, due to the actinide contraction, the An-C distance increases from Pa to Pu. We demonstrate that the direct L-An σ and π donations combined with the An-L δ or φ back-donations are crucial in explaining this non-classical trend of the An-L bond lengths in both series, underscoring the significance of these δ/φ back-donation interactions, and their importance for complexes of Pa and U in particular.

2.
Chem Commun (Camb) ; 54(75): 10578-10581, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30175362

ABSTRACT

Literature casts einsteinium as a departure from earlier transplutonium actinides, with a decrease in stability constants with aminopolycarboxylate ligands. This report studies transplutonium chemistry - including Am, Bk, Cf, and Es - with aminopolycarboxylate ligands. Es complexation follows similar thermodynamic and structural trends established by the earlier actinides, consistent with first-principle calculations.

3.
Inorg Chem ; 57(16): 10050-10058, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30067015

ABSTRACT

Competitive forces exist in multicomponent solutions, and within electrolytes they consist of both ion-solvent and solvent-solvent interactions. These can influence a myriad of processes, including ligand complexation. In the case of water/alcohol solutions, recent work revealed an interesting dilemma regarding the overall solution dynamics and organization as compared to solute-solvent interactions. This is particularly true for highly charged ions in solution, whose ion-solvent interactions were demonstrated to be highly sensitive to the composition of the immediate solvation environment. Faster solvent exchange should be observed about the ion, considering that second-order Møller-Plesset perturbation theory predicts an average decrease in ion-solvent dissociation energy when methanol enters the first solvation shell of Cm3+(aq). Yet the addition of methanol to water causes the dynamic features of the hydrogen-bond network of the entire solution to slow. The apparent competition between these contrary forces was examined using a combination of electronic structure calculations with both ab initio and classical molecular dynamics simulations, using binary water/methanol solutions and Cm3+ as a representative solute. This combination of theoretical methods predicts that, among the competitive effects of the solvent-solvent and ion-solvent interactions, the solution-phase dynamics imparted by the addition of methanol to water kinetically restricts the solvation exchange rates about Cm3+ in these binary solutions.

4.
Inorg Chem ; 57(9): 5352-5363, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29624372

ABSTRACT

The hydroxypyridinone ligand 3,4,3-LI(1,2-HOPO) is a promising agent for biological decorporation of radionuclides, and allows spectroscopic detection of many lanthanide (Ln) and actinide (An) species via sensitized luminescence. Despite the manifest uses of this ligand, the structural and thermodynamic properties of its complexes across the An series remain understudied. Theoretical investigations of the binding of An(III) and An(IV) ions, from actinium to einsteinium, by the 3,4,3-LI(1,2-HOPO) ligand, as well as experimental extended X-ray absorption fine structure (EXAFS) studies on the trivalent americium, curium, and californium complexes were employed to address the resulting structures, thermodynamic parameters, redox properties, and corresponding electronic configurations. An(IV) ions were found to form much stronger complexes than An(III) ions, consistent with experimental measurements. Complexation of both An(III) and An(IV) ions generally becomes more favorable for heavier actinides, reflecting increased energy degeneracy driven covalency and concomitant orbital mixing between the 5f orbitals of the An ions and the π orbitals of the ligand. Notably, the ability of this ligand to either accept or donate electron density as needed from its pyridine rings is found to be key to its extraordinary stability across the actinide series.

5.
Angew Chem Int Ed Engl ; 57(17): 4521-4526, 2018 04 16.
Article in English | MEDLINE | ID: mdl-29473263

ABSTRACT

The chemistry of trivalent transplutonium ions (Am3+ , Cm3+ , Bk3+ , Cf3+ , Es3+ …) is usually perceived as monotonic and paralleling that of the trivalent lanthanide series. Herein, we present the first extended X-ray absorption fine structure (EXAFS) study performed on a series of aqueous heavy actinide chelates, extending past Cm. The results obtained on diethylenetriaminepentaacetic acid (DTPA) complexes of trivalent Am, Cm, Bk, and Cf show a break to much shorter metal-oxygen nearest-neighbor bond lengths in the case of Cf3+ . Corroborating those results, density functional theory calculations, extended to Es3+ , suggest that the shorter Cf-O and Es-O bonds could arise from the departure of the coordinated water molecule and contraction of the ligand around the metal relative to the other [MIII DTPA(H2 O)]2- (M=Am, Cm, Bk) complexes. Taken together, these experimental and theoretical results demonstrate inhomogeneity within the trivalent transplutonium series that has been insinuated and debated in recent years, and that may also be leveraged for future nuclear waste reprocessing technologies.

6.
Analyst ; 142(23): 4468-4475, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-29094733

ABSTRACT

Electrospray ionization mass spectrometry (ESI-MS) is a valuable and frequently used analytical technique across nearly all branches of chemistry, and has recently seen increasing use in the study of metal-ligand solution equilibria. Despite its prevalence, the method by which ESI produces gas-phase ions from solutions containing metal-ligand complexes is not fully understood, with recent reports showing significant changes to solution equilibria during ESI analysis. This study examines perturbations to the formation kinetics of metal-ligand complexes during the ESI process, showing how quickly new equilibria - reflective of the ionization process and not solution - can be established. Electrospray ionization mass spectrometry (ESI-MS) and ion mobility spectrometry (IMS) are used to examine the well studied Lu-DOTA (1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid) complexation reaction, with collision cross section modeling based on density functional theory (DFT) optimized structures used to aid in the interpretation of the ion mobility results. The electrospray process was found to significantly accelerate the formation kinetics, increasing the formation rate constant by more than an order of magnitude over its previously determined solution-phase value.

7.
J Am Chem Soc ; 139(29): 9901-9908, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28657317

ABSTRACT

Recent reports have suggested the late actinides participate in more covalent interactions than the earlier actinides, yet the origin of this shift in chemistry is not understood. This report considers the chemistry of actinide dipicolinate complexes to identify why covalent interactions become more prominent for heavy actinides. A modest increase in measured actinide:dipicolinate stability constants is coincident with a significant increase in An 5f energy degeneracy with the dipicolinate molecular orbitals for Bk and Cf relative to Am and Cm. While the interactions in the actinide-dipicolinate complex are largely ionic, the decrease in 5f orbital energy across the series manifests in orbital-mixing and, hence, covalency driven by energy degeneracy. This observation suggests the origin of covalency in heavy actinide interactions stems from the degeneracy of 5f orbitals with ligand molecular orbitals rather than spatial orbital overlap. These findings suggest that the limiting radial extension of the 5f orbitals later in the actinide series could make the heavy actinides ideal elements to probe and tune effects of energy degeneracy driven covalency.

8.
Inorg Chem ; 55(10): 4992-9, 2016 05 16.
Article in English | MEDLINE | ID: mdl-27120717

ABSTRACT

The geometric and electronic structures of the 9-coordinate Cm(3+) ion solvated with both water and methanol are systematically investigated in the gas phase at each possible solvent-shell composition and configuration using density functional theory and second-order Møller-Plesset perturbation theory. Ab initio molecular dynamics simulations are employed to assess the effects of second and third solvent shells on the gas-phase structure. The ion-solvent dissociation energy for methanol is greater than that of water, potentially because of increased charge donation to the ion made possible by the electron-rich methyl group. Further, the ion-solvent dissociation energy and the ion-solvent distance are shown to be dependent on the solvent-shell composition. This has implications for solvent exchange, which is generally the rate-limiting step in complexation reactions utilized in the separation of curium from complex metal mixtures that derive from the advanced nuclear fuel cycle.

SELECTION OF CITATIONS
SEARCH DETAIL
...