Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Am J Physiol Lung Cell Mol Physiol ; 326(2): L164-L174, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38084406

ABSTRACT

Cystic fibrosis (CF) results in a reduction in the volume of airway surface liquid, increased accumulation of viscous mucus, persistent antibiotic-resistant lung infections that cause chronic inflammation, and a decline in lung function. More than 50% of adults with CF are chronically colonized by Pseudomonas aeruginosa (P. aeruginosa), the primary reason for morbidity and mortality in people with CF (pwCF). Although highly effective modulator therapy (HEMT) is an important part of disease management in CF, HEMT does not eliminate P. aeruginosa or lung inflammation. Thus, new treatments are required to reduce lung infection and inflammation in CF. In a previous in vitro study, we demonstrated that primary human bronchial epithelial cells (HBECs) secrete extracellular vesicles (EVs) that block the ability of P. aeruginosa to form biofilms by reducing the abundance of several proteins necessary for biofilm formation as well as enhancing the sensitivity of P. aeruginosa to ß-lactam antibiotics. In this study, using a CF mouse model of P. aeruginosa infection, we demonstrate that intratracheal administration of EVs secreted by HBEC reduced P. aeruginosa lung burden and several proinflammatory cytokines including IFN-γ, TNF-α, and MIP-1ß in bronchoalveolar lavage fluid (BALF), even in the absence of antibiotics. Moreover, EVs decreased neutrophils in BALF. Thus, EVs secreted by HBEC reduce the lung burden of P. aeruginosa, decrease inflammation, and reduce neutrophils in a CF mouse model. These results suggest that HBEC via the secretion of EVs may play an important role in the immune response to P. aeruginosa lung infection.NEW & NOTEWORTHY Our findings show that extracellular vesicles secreted by primary human bronchial epithelial cells significantly reduce Pseudomonas aeruginosa burden, inflammation, and weight loss in a cystic fibrosis mouse model of infection.


Subject(s)
Cystic Fibrosis , Extracellular Vesicles , Pseudomonas Infections , Adult , Humans , Mice , Animals , Cystic Fibrosis/metabolism , Pseudomonas aeruginosa/physiology , Lung , Inflammation/metabolism , Disease Models, Animal , Epithelial Cells , Extracellular Vesicles/metabolism
2.
Res Sq ; 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37398019

ABSTRACT

Histone deacetylase 6 (HDAC6) is a class II histone deacetylase that is predominantly localized in the cytoplasm of cells. HDAC6 associates with microtubules, regulating acetylation of tubulin and other proteins. The possibility that HDAC6 participates in hypoxic signaling is supported by evidence that (1) hypoxic gas challenges cause microtubule depolymerization, (2) expression of hypoxia inducible factor alpha (HIF)-1α is regulated by microtubule alterations in response to hypoxia, and (3) inhibition of HDAC6 prevents HIF-1α expression and protects tissue from hypoxic/ischemic insults. The aim of this study was to address whether the absence of HDAC6 alters ventilatory responses during and/or after hypoxic gas challenges (10% O2, 90% N2 for 15 min) in adult male wild-type (WT) C57BL/6 mice and HDAC6 knockout (KO) mice. Key findings were that (1) baseline values for frequency of breathing, tidal volume, inspiratory and expiratory times and end expiratory pause were different between KO mice and WT mice, (2) ventilatory responses during hypoxic challenge were more robust in KO mice than WT mice for parameters including frequency of breathing, minute ventilation, inspiratory and expiratory durations, peak inspiratory and expiratory flows, inspiratory and expiratory drives, and (3) responses upon return to room-air were markedly different in KO mice than WT mice for frequency of breathing, minute ventilation, inspiratory and expiratory durations, end expiratory (but not end inspiratory) pauses, peak inspiratory and expiratory flows, and inspiratory or expiratory drives. These data suggest that HDAC6 may have a fundamentally important role in regulating the neural responses to hypoxia.

3.
Sci Rep ; 13(1): 12272, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37507487

ABSTRACT

Microtubule dysfunction has been implicated as a mediator of inflammation in multiple diseases such as disorders of the cardiovascular and neurologic systems. Tubulin polymerization promoting protein (Tppp) facilitates microtubule elongation and regulates tubulin acetylation through inhibition of cytosolic deacetylase enzymes. Pathologic alterations in microtubule structure and dynamics have been described in cystic fibrosis (CF) and associated with inflammation, however the causality and mechanism remain unclear. Likewise, Tppp has been identified as a potential modifier of CF airway disease severity. Here we directly assess the impact of microtubule dysfunction on infection and inflammation by interrogating wild type and a Tppp knockout mouse model (Tppp - / -). Mice are challenged with a clinical isolate of Pseudomonas aeruginosa-laden agarose beads and assessed for bacterial clearance and inflammatory markers. Tppp - / - mouse model demonstrate impaired bacterial clearance and an elevated inflammatory response compared to control mice. These data are consistent with the hypothesis microtubule dysregulation is sufficient to lead to CF-like airway responses in mice.


Subject(s)
Cystic Fibrosis , Nerve Tissue Proteins , Tubulin , Animals , Mice , Cystic Fibrosis/metabolism , Microtubules/metabolism , Nerve Tissue Proteins/metabolism , Polymerization , Tubulin/metabolism
4.
Lab Anim ; 57(6): 611-622, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37382374

ABSTRACT

The laboratory mouse is used extensively for human disease modeling and preclinical therapeutic testing for efficacy, biodistribution, and toxicity. The variety of murine models available, and the ability to create new ones, eclipses all other species, but the size of mice and their organs create challenges for many in vivo studies. For pulmonary research, improved methods to access murine airways and lungs, and track substances administered to them, would be desirable. A nonsurgical endoscopic system with a camera, effectively a bronchoscope, coupled with a cryoimaging fluorescence microscopy technique to view the lungs in 3D, is described here that allows visualization of the procedure, including the anatomical location at which substances are instilled and fluorescence detection of those substances. We have applied it to bacterial infection studies to characterize better and optimize a chronic lung infection murine model in which we instill bacteria-laden agarose beads into the airways and lungs to extend the duration of the infection and inflammation. The use of the endoscope as guidance for placing a catheter into the airways is simple and quick, requiring only momentary sedation, and reduces post-procedural mortality compared with our previous instillation method that includes a trans-tracheal surgery. The endoscopic method improves speed and precision of delivery while reducing the stress on animals and the number of animals generated and used for experiments.


Subject(s)
Bronchoscopy , Lung , Humans , Animals , Mice , Tissue Distribution , Lung/microbiology
5.
Front Physiol ; 14: 1332810, 2023.
Article in English | MEDLINE | ID: mdl-38384929

ABSTRACT

Histone deacetylase 6 (HDAC6) is a class II histone deacetylase that is predominantly localized in the cytoplasm of cells. HDAC6 associates with microtubules and regulates acetylation of tubulin and other proteins. The possibility that HDAC6 participates in hypoxic signaling is supported by evidence that 1) hypoxic gas challenges cause microtubule depolymerization, 2) expression of hypoxia inducible factor alpha (HIF-1α) is regulated by microtubule alterations in response to hypoxia, and 3) inhibition of HDAC6 prevents HIF-1α expression and protects tissue from hypoxic/ischemic insults. The aim of this study was to address whether the absence of HDAC6 alters ventilatory responses during and/or after hypoxic gas challenge (10% O2, 90% N2 for 15 min) in adult male wildtype (WT) C57BL/6 mice and HDAC6 knock-out (KO) mice. Key findings were that 1) baseline values for frequency of breathing, tidal volume, inspiratory and expiratory times, and end expiratory pause were different between knock-out mice and wildtype mice, 2) ventilatory responses during hypoxic challenge were more robust in KO mice than WT mice for recorded parameters including, frequency of breathing, minute ventilation, inspiratory and expiratory durations, peak inspiratory and expiratory flows, and inspiratory and expiratory drives, and 3) responses upon return to room-air were markedly different in KO compared to WT mice for frequency of breathing, minute ventilation, inspiratory and expiratory durations, end expiratory pause (but not end inspiratory pause), peak inspiratory and expiratory flows, and inspiratory and expiratory drives. These data suggest that HDAC6 may have a fundamentally important role in regulating the hypoxic ventilatory response in mice.

6.
Am J Physiol Cell Physiol ; 323(4): C1112-C1120, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36062879

ABSTRACT

Disordered sleep experienced by people with cystic fibrosis (CF) suggest a possible disruption in circadian regulation being associated with the loss of cystic fibrosis transmembrane conductance regulator (Cftr) function. To test this hypothesis, circadian regulation was assessed in an F508del/F508del CF mouse model. CF mice exhibited significant alterations in both timing of locomotor activity and in mean activity per hour in both light-dark (LD) and dark-dark (DD) photoperiods compared with wild-type (WT) controls. It was also noted that in DD periodicity increased in CF mice, whereas shortening in WT mice as is expected. CF mice also exhibited altered timing of circadian gene expression and a reduction of melatonin production at all time points. Mechanistically, the role of microtubules in regulating these outcomes was explored. Mice lacking expression of tubulin polymerization promoting protein (Tppp) effectively mimicked CF mouse phenotypes with each measured outcome. Depleting expression of the microtubule regulatory protein histone deacetylase 6 (Hdac6) from CF mice (CF/Hdac6) resulted in the reversal of each phenotype to WT profiles. These data demonstrate an innate disruption of circadian regulation in CF mice and identify a novel microtubule-related mechanism leading to this disruption that can be targeted for therapeutic intervention.


Subject(s)
Cystic Fibrosis , Melatonin , Animals , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Mice , Tubulin/metabolism
7.
Exp Mol Med ; 54(5): 639-652, 2022 05.
Article in English | MEDLINE | ID: mdl-35581352

ABSTRACT

Overwhelming neutrophilic inflammation is a leading cause of lung damage in many pulmonary diseases, including cystic fibrosis (CF). The heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway mediates the resolution of inflammation and is defective in CF-affected macrophages (MΦs). Here, we provide evidence that systemic administration of PP-007, a CO releasing/O2 transfer agent, induces the expression of HO-1 in a myeloid differentiation factor 88 (MyD88) and phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)-dependent manner. It also rescues the reduced HO-1 levels in CF-affected cells induced in response to lipopolysaccharides (LPS) or Pseudomonas aeruginosa (PA). Treatment of CF and muco-obstructive lung disease mouse models with a single clinically relevant dose of PP-007 leads to effective resolution of lung neutrophilia and to decreased levels of proinflammatory cytokines in response to LPS. Using HO-1 conditional knockout mice, we show that the beneficial effect of PP-007 is due to the priming of circulating monocytes trafficking to the lungs in response to infection to express high levels of HO-1. Finally, we show that PP-007 does not compromise the clearance of PA in the setting of chronic airway infection. Overall, we reveal the mechanism of action of PP-007 responsible for the immunomodulatory function observed in clinical trials for a wide range of diseases and demonstrate the potential use of PP-007 in controlling neutrophilic pulmonary inflammation by promoting the expression of HO-1 in monocytes/macrophages.


Subject(s)
Cystic Fibrosis , Pneumonia , Animals , Cystic Fibrosis/complications , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Heme Oxygenase-1 , Inflammation/metabolism , Lipopolysaccharides/metabolism , Lung/pathology , Mice , Monocytes/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/pathology
8.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L333-L347, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34986321

ABSTRACT

Several aspects of the cell biology of cystic fibrosis (CF) epithelial cells are altered including impaired lipid regulation, disrupted intracellular transport, and impaired microtubule regulation. It is unclear how the loss of cystic fibrosis transmembrane conductance regulator (CFTR) function leads to these differences. It is hypothesized that the loss of CFTR function leads to altered regulation of carbonic anhydrase (CA) activity resulting in cellular phenotypic changes. In this study, it is demonstrated that CA2 protein expression is reduced in CF model cells, primary mouse nasal epithelial (MNE) cells, excised MNE tissue, and primary human nasal epithelial cells (P < 0.05). This corresponds to a decrease in CA2 RNA expression measured by qPCR as well as an overall reduction in CA activity in primary CF MNEs. The addition of CFTR-inhibitor-172 to WT MNE cells for ≥24 h mimics the significantly lower protein expression of CA2 in CF cells. Treatment of CF cells with l-phenylalanine (L-Phe), an activator of CA activity, restores endosomal transport through an effect on microtubule regulation in a manner dependent on soluble adenylate cyclase (sAC). This effect can be blocked with the CA2-selective inhibitor dorzolamide. These data suggest that the loss of CFTR function leads to the decreased expression of CA2 resulting in the downstream cell signaling alterations observed in CF.


Subject(s)
Carbonic Anhydrases , Cystic Fibrosis , Adenylyl Cyclases/metabolism , Animals , Carbonic Anhydrases/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Epithelial Cells/metabolism , Mice , Phenotype
9.
Violence Against Women ; 28(2): 573-592, 2022 02.
Article in English | MEDLINE | ID: mdl-34229509

ABSTRACT

This study is the first to test the efficacy of principle-based correctional counseling (PBCC) for improving the self-control and mental health of people incarcerated for sexual violence (SV). A total of 132 males incarcerated for SV were assigned to a treatment group that received cognitive behavior therapy (CBT) supplemented with intensive PBCC and a waitlist control group that received only CBT. Results using paired t-tests and an analysis of covariance (ANCOVA) to control for pretest scores showed that compared with the control group, treatment participants showed a significant increase in affective well-being and a significant decrease in low self-control, depression, anxiety, and anger.


Subject(s)
Prisoners , Self-Control , Sex Offenses , Counseling , Humans , Male , Mental Health , Prisoners/psychology
10.
PLoS Negl Trop Dis ; 15(11): e0009859, 2021 11.
Article in English | MEDLINE | ID: mdl-34780473

ABSTRACT

During 2019-2020, the Virgin Islands Department of Health investigated potential animal reservoirs of Leptospira spp., the bacteria that cause leptospirosis. In this cross-sectional study, we investigated Leptospira spp. exposure and carriage in the small Indian mongoose (Urva auropunctata, syn: Herpestes auropunctatus), an invasive animal species. This study was conducted across the three main islands of the U.S. Virgin Islands (USVI), which are St. Croix, St. Thomas, and St. John. We used the microscopic agglutination test (MAT), fluorescent antibody test (FAT), real-time polymerase chain reaction (lipl32 rt-PCR), and bacterial culture to evaluate serum and kidney specimens and compared the sensitivity, specificity, positive predictive value, and negative predictive value of these laboratory methods. Mongooses (n = 274) were live-trapped at 31 field sites in ten regions across USVI and humanely euthanized for Leptospira spp. testing. Bacterial isolates were sequenced and evaluated for species and phylogenetic analysis using the ppk gene. Anti-Leptospira spp. antibodies were detected in 34% (87/256) of mongooses. Reactions were observed with the following serogroups: Sejroe, Icterohaemorrhagiae, Pyrogenes, Mini, Cynopteri, Australis, Hebdomadis, Autumnalis, Mankarso, Pomona, and Ballum. Of the kidney specimens examined, 5.8% (16/270) were FAT-positive, 10% (27/274) were culture-positive, and 12.4% (34/274) were positive by rt-PCR. Of the Leptospira spp. isolated from mongooses, 25 were L. borgpetersenii, one was L. interrogans, and one was L. kirschneri. Positive predictive values of FAT and rt-PCR testing for predicting successful isolation of Leptospira by culture were 88% and 65%, respectively. The isolation and identification of Leptospira spp. in mongooses highlights the potential role of mongooses as a wildlife reservoir of leptospirosis; mongooses could be a source of Leptospira spp. infections for other wildlife, domestic animals, and humans.


Subject(s)
Disease Reservoirs/microbiology , Herpestidae/microbiology , Leptospira/isolation & purification , Agglutination Tests , Animals , Cross-Sectional Studies , Herpestidae/physiology , Humans , Introduced Species/statistics & numerical data , Kidney/microbiology , Leptospira/genetics , Leptospira/immunology , Leptospirosis/microbiology , Leptospirosis/transmission , Phylogeny , United States Virgin Islands
11.
FASEB Bioadv ; 3(10): 841-854, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34632318

ABSTRACT

Cystic Fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. The F508del and G542X are the most common mutations found in US patients, accounting for 86.4% and 4.6% of all mutations, respectively. The F508del causes deletion of the phenylalanine residue at position 508 and is associated with impaired CFTR protein folding. The G542X is a nonsense mutation that introduces a stop codon into the mRNA, thus preventing normal CFTR protein synthesis. Here, we describe the generation of CFTRF508del / F508del and CFTRG542X / G542X lambs using CRISPR/Cas9 and somatic cell nuclear transfer (SCNT). First, we introduced either F508del or G542X mutations into sheep fetal fibroblasts that were subsequently used as nuclear donors for SCNT. The newborn CF lambs develop pathology similar to CFTR -/- sheep and CF patients. Moreover, tracheal epithelial cells from the CFTRF508del / F508del lambs responded to a human CFTR (hCFTR) potentiator and correctors, and those from CFTRG542X / G542X lambs showed modest restoration of CFTR function following inhibition of nonsense-mediated decay (NMD) and aminoglycoside antibiotic treatments. Thus, the phenotype and electrophysiology of these novel models represent an important advance for testing new CF therapeutics and gene therapy to improve the health of patients with this life-limiting disorder.

12.
Sci Rep ; 11(1): 17535, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475490

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disease caused by dysfunctional cystic fibrosis transmembrane conductance regulator (CFTR) protein, and is marked by an accumulation of mucus in affected airways resulting in persistent infection and chronic inflammation. Quantitative differences in inflammatory markers have been observed in CF patient serum, tracheal cells, and bronchoalveolar lavage fluid, in the absence of detectable infection, implying that absent CFTR function alone may result in dysregulated immune responses. To examine the relationship between absent CFTR and systemic inflammation, 22 analytes were measured in CF mice (F508del/F508del) sera using the MSD multiplex platform. Pro-inflammatory cytokines IL-2, TNF-α, IL-17α, IFN-γ, IL-1ß, and MIP-3α are significantly elevated in infection-naïve CF mice (p < 0.050). Anti-inflammatory cytokines IL-10 and IL-4 are also significantly increased (p = 0.00003, p = 0.004). Additionally, six general markers of inflammation are significantly different from non-CF controls (p < 0.050). To elucidate the effects of chronic infection on the CF inflammatory profile, we examined CF mice exposed to spontaneous Bordetella pseudohinzii infections. There are no statistical differences in nearly all inflammatory markers when compared to their infection-naïve CF counterparts, except in the Th2-derived IL-4 and IL-5 which demonstrate significant decreases following exposure (p = 0.046, p = 0.045). Lastly, following acute infection, CF mice demonstrate elevations in nearly all inflammatory markers, but exhibit a shortened return to uninfected levels over time, and suppression of Th1-derived IL-2 and IL-5 (p = 0.043, p = 0.011). These results imply that CF mice have a persistent inflammatory profile often indistinguishable from chronic infection, and a dysregulated humoral response during and following active infection.


Subject(s)
Bordetella Infections/complications , Bordetella/isolation & purification , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/microbiology , Cytokines/blood , Inflammation/diagnosis , Mutation , Animals , Bordetella Infections/metabolism , Bordetella Infections/microbiology , Cystic Fibrosis/genetics , Cystic Fibrosis/pathology , Disease Models, Animal , Female , Inflammation/blood , Inflammation/immunology , Male , Mice , Mice, Inbred C57BL
13.
PLoS Negl Trop Dis ; 15(7): e0009536, 2021 07.
Article in English | MEDLINE | ID: mdl-34264951

ABSTRACT

Mongooses, a nonnative species, are a known reservoir of rabies virus in the Caribbean region. A cross-sectional study of mongooses at 41 field sites on the US Virgin Islands of St. Croix, St. John, and St. Thomas captured 312 mongooses (32% capture rate). We determined the absence of rabies virus by antigen testing and rabies virus exposure by antibody testing in mongoose populations on all three islands. USVI is the first Caribbean state to determine freedom-from-rabies for its mongoose populations with a scientifically-led robust cross-sectional study. Ongoing surveillance activities will determine if other domestic and wildlife populations in USVI are rabies-free.


Subject(s)
Animals, Wild/virology , Disease Reservoirs/virology , Herpestidae/virology , Rabies virus/isolation & purification , Animals , Cross-Sectional Studies , Rabies virus/classification , Rabies virus/genetics , United States Virgin Islands
14.
J Circadian Rhythms ; 19: 5, 2021 May 20.
Article in English | MEDLINE | ID: mdl-34046074

ABSTRACT

The circadian timing system (CTS) is a complex set of cyclic cellular mechanisms which serve to synchronize discrete cell groups across multiple organ systems to adapt the bodys physiology to a (roughly) 24-hour clock. Many genes and hormones have been shown to be strongly associated with the CTS, some of which include the genes Bmal1, Period1, Period2, Cryptochrome1, and Cryptochrome2, and the hormone melatonin. Previous data suggest that microtubule dynamics play an important role in melatonin function as it relates to the CTS in vitro, though this relationship has never been explored in vivo. The purpose of this study was to determine whether disruption of microtubule regulation in C57Bl/6 mice results in measurable changes to the CTS. To study the potential effects of microtubule dynamics on the CTS in vivo, we utilized a mouse model of microtubule instability, knocked out for the tubulin polymerization promoting protein gene (Tppp -/-), comparing them to their wild type (WT) littermates in three categories: locomotor activity (in light/dark and dark/dark photoperiods), serial clock gene expression, and serial serum melatonin concentration. These comparisons showed differences in all three categories, including significant differences in locomotor characteristics under dark/dark conditions. Our findings support and extend previous reports that microtubule dynamics are a modulator of circadian rhythm regulation likely through a mechanism involving melatonin induced phase shifting.

15.
Int J Psychiatry Clin Pract ; 25(4): 333-335, 2021 Nov.
Article in English | MEDLINE | ID: mdl-33124501

ABSTRACT

The authors are encouraged that the field of psychiatry is moving towards including euthymia and its components (e.g., well-being, flourishing and resilience) as well as dysfunction (i.e., psychopathology and its symptoms) in its assessment and treatment. We are concerned, however, that to guide its pursuit of euthymia, psychiatry appears to be adopting the same 'outside-in' paradigm as positive psychology; that the positive must be 'put into' people via assisting them to adopt new positive beliefs and persistently practice psychotherapeutic techniques. We fear that if psychiatry continues to view the positive through this 'outside-in' lens, its pursuit of euthymia will bear small fruit. In this editorial, we posit that mental health and psychopathology can be viewed from the same basis because both are created in the same way; from the 'inside-out' via people's use of three psycho-spiritual Principles-Universal Mind, Consciousness and Thought. We posit that people can use these Principles in a way that either creates distressing symptoms or releases innate euthymia. We further posit that via awareness and sufficient insight-based understanding of how these Principles manifest within everyone, psychiatry can achieve a deeper understanding of the source of all psychological experience that will facilitate its pursuit of euthymia.


Subject(s)
Mental Health , Psychiatry , Humans , Psychotherapy
16.
Sci Rep ; 10(1): 16278, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004910

ABSTRACT

Cystic fibrosis (CF) patients experience heightened levels of anxiety and depression. Stress from dealing with chronic disease and rigorous treatment regimens certainly are primary contributors to these outcomes. We previously have demonstrated that microtubule alterations in CF are linked to a number of CF phenotypes including growth regulation and inflammatory responses to airway bacterial challenge. Deletion of histone deactelyase 6 (HDAC6), a cytosolic deacetylase that regulates tubulin acetylation, in CF mice restores growth and inflammatory phenotypes to wild type (WT) profiles. In this study, the hypothesis that Hdac6 depletion in CF mice would impact behaviors since Hda6 inhibition has been previously reported to have anti-depressive properties. Data demonstrate that CF mice exhibit reduced activity and reduced open arm time in an elevated plus maze test which can be consistent with anxiety-like behavior. CF mice also exhibit depression-like behaviors compared to WT mice in an age dependent manner. By eight weeks of age, CF mice exhibit significantly more immobile time in the tail-suspension test, however, Hdac6 depletion reverses the depressive phenotype. These data demonstrate that loss of CFTR function may predispose patients to experience depression and that this behavior is Hdac6 dependent.


Subject(s)
Cystic Fibrosis/complications , Depression/etiology , Histone Deacetylase 6/physiology , Animals , Anxiety/etiology , Cystic Fibrosis/psychology , Disease Models, Animal , Female , Male , Maze Learning , Mice , Mice, Knockout
17.
Am J Physiol Lung Cell Mol Physiol ; 318(6): L1145-L1157, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32267731

ABSTRACT

We have demonstrated previously that intracellular transport is impaired in cystic fibrosis (CF) epithelial cells. This impairment is related to both growth and inflammatory regulation in CF cell and animal models. Understanding how transport in CF cells is regulated and identifying means to manipulate that regulation are key to identifying new therapies that can address key CF phenotypes. It was hypothesized that resveratrol could replicate these benefits since it interfaces with multiple pathways identified to affect microtubule regulation in CF. It was found that resveratrol treatment significantly restored intracellular transport as determined by monitoring both cholesterol distribution and the distribution of rab7-positive organelles in CF cells. This restoration of intracellular transport is due to correction of both microtubule formation rates and microtubule acetylation in cultured CF cell models and primary nasal epithelial cells. Mechanistically, the effect of resveratrol on microtubule regulation and intracellular transport was dependent on peroxisome proliferator-activated receptor-γ signaling and its ability to act as a pan-histone deacetylase (HDAC) inhibitor. Resveratrol represents a candidate compound with known anti-inflammatory properties that can restore both microtubule formation and acetylation in CF epithelial cells.


Subject(s)
Cystic Fibrosis/pathology , Epithelial Cells/metabolism , Epithelial Cells/pathology , Intracellular Space/metabolism , Resveratrol/pharmacology , 1-Methyl-3-isobutylxanthine/pharmacology , Acetylation/drug effects , Biological Transport/drug effects , Carbazoles/pharmacology , Cells, Cultured , Cholesterol/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Intracellular Space/drug effects , Microtubules/drug effects , Microtubules/metabolism , Nose/pathology , PPAR gamma/antagonists & inhibitors , PPAR gamma/metabolism , Phosphodiesterase Inhibitors/pharmacology , Resorcinols/pharmacology , Signal Transduction/drug effects , Sirtuins/metabolism , Stilbenes/pharmacology , Tubulin/metabolism
18.
Psychiatr Psychol Law ; 27(4): 558-577, 2020.
Article in English | MEDLINE | ID: mdl-33679198

ABSTRACT

Considerable empirical research has shown that work-family conflict has a negative effect on the job satisfaction and organizational commitment of United States correctional staff. This study is the first to examine the effect of work-family conflict on job satisfaction and organizational commitment for staff at Chinese prisons. Findings from ordinary least squares (OLS) regression analyses indicated that strain-based conflict, behavior-based conflict and family-on-work conflict had negative effects on the job satisfaction of Chinese prison staff. Also, strain-based conflict and behavior-based conflict had negative effects on organizational commitment. Overall, the results support the conclusion that work-family conflict was generally perceived as stressful by Chinese prison staff and negatively impacted their job satisfaction and organizational commitment, as has been found among United States staff.

19.
J Interpers Violence ; 35(23-24): 5425-5447, 2020 11.
Article in English | MEDLINE | ID: mdl-29294848

ABSTRACT

Gender is arguably the most prominent correlate of criminal victimization. Few studies, however, examine gender-specific dynamics that might help advance criminology's understanding of the persistent gender gap in criminal victimization. We attempt to help fill this research void by examining data from the 2012 National Incident-Based Reporting System (NIBRS) through the lens of routine activity theory to investigate the relationship between "gendered spaces" and criminal victimization. We propose that gendered spaces constructed by people's routine activities may increase their exposure to motivated offenders, which in turn may increase their risk of victimization. Our findings appear to support our proposition and to shed new light on the nature of the victimization gender gap. The results showed that females were significantly more likely than males to be victimized at each of the three "feminine gendered spaces" (i.e., bank, shopping center, and grocery store). However, the relationship between gendered space and criminal victimization varied by crime type. Females were significantly more likely than males to be robbed at each of the three feminine gendered spaces. For sexual assault and aggravated assault, females were significantly more likely than males to be victimized at a "masculine gendered space" (i.e., bar/nightclub). For simple assault, females were significantly less likely than males to be victimized at two of the three feminine gendered spaces (i.e., bank and shopping center). Our findings appear to highlight the importance of gendered spaces in helping explain the gender gap in criminal victimization and suggest that future researchers should investigate how other gendered spaces formed by people's routine activities affect their risk of victimization.


Subject(s)
Bullying , Crime Victims , Criminals , Sex Offenses , Crime , Female , Humans , Male
20.
Int J Offender Ther Comp Criminol ; 64(8): 791-817, 2020 06.
Article in English | MEDLINE | ID: mdl-31874569

ABSTRACT

Past research among U.S. correctional staff has found that work-family conflict has negative outcomes such as decreasing job satisfaction, decreasing organizational commitment, and increasing job stress. Little empirical research has addressed the association of the specific types of work-family conflict with job involvement. The present study contributes to the literature by separately analyzing the relationship of the four specific major types of work-family conflict (time-based conflict, strain-based conflict, behavior-based conflict, and family-on-work conflict) with job involvement among surveyed staff at two Chinese prisons. Job involvement varied by the type of work-family conflict. Specifically, time-based conflict and strain-based conflict had nonsignificant association with job involvement, but behavior-based and family-based conflicts had significant negative associations.


Subject(s)
Conflict, Psychological , Correctional Facilities , Family/psychology , Job Satisfaction , Occupational Stress/psychology , Work Engagement , Adult , China , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...