Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 360(6394)2018 06 15.
Article in English | MEDLINE | ID: mdl-29773669

ABSTRACT

The majority of patients with pancreatic ductal adenocarcinoma (PDA) develop metastatic disease after resection of their primary tumor. We found that livers from patients and mice with PDA harbor single disseminated cancer cells (DCCs) lacking expression of cytokeratin 19 (CK19) and major histocompatibility complex class I (MHCI). We created a mouse model to determine how these DCCs develop. Intraportal injection of immunogenic PDA cells into preimmunized mice seeded livers only with single, nonreplicating DCCs that were CK19- and MHCI- The DCCs exhibited an endoplasmic reticulum (ER) stress response but paradoxically lacked both inositol-requiring enzyme 1α activation and expression of the spliced form of transcription factor XBP1 (XBP1s). Inducible expression of XBP1s in DCCs, in combination with T cell depletion, stimulated the outgrowth of macrometastatic lesions that expressed CK19 and MHCI. Thus, unresolved ER stress enables DCCs to escape immunity and establish latent metastases.


Subject(s)
Carcinoma, Pancreatic Ductal/secondary , Endoplasmic Reticulum Stress/immunology , Liver Neoplasms/secondary , Pancreatic Neoplasms/pathology , Tumor Escape , Animals , Carcinoma, Pancreatic Ductal/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Genes, MHC Class I , Genetic Engineering , Humans , Keratin-19/metabolism , Liver Neoplasms/immunology , Lymphocyte Depletion , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/genetics , Neoplasms, Experimental/immunology , Neoplasms, Experimental/secondary , Pancreatic Neoplasms/immunology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/immunology , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
2.
Nature ; 551(7681): 512-516, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29132146

ABSTRACT

Pancreatic ductal adenocarcinoma is a lethal cancer with fewer than 7% of patients surviving past 5 years. T-cell immunity has been linked to the exceptional outcome of the few long-term survivors, yet the relevant antigens remain unknown. Here we use genetic, immunohistochemical and transcriptional immunoprofiling, computational biophysics, and functional assays to identify T-cell antigens in long-term survivors of pancreatic cancer. Using whole-exome sequencing and in silico neoantigen prediction, we found that tumours with both the highest neoantigen number and the most abundant CD8+ T-cell infiltrates, but neither alone, stratified patients with the longest survival. Investigating the specific neoantigen qualities promoting T-cell activation in long-term survivors, we discovered that these individuals were enriched in neoantigen qualities defined by a fitness model, and neoantigens in the tumour antigen MUC16 (also known as CA125). A neoantigen quality fitness model conferring greater immunogenicity to neoantigens with differential presentation and homology to infectious disease-derived peptides identified long-term survivors in two independent datasets, whereas a neoantigen quantity model ascribing greater immunogenicity to increasing neoantigen number alone did not. We detected intratumoural and lasting circulating T-cell reactivity to both high-quality and MUC16 neoantigens in long-term survivors of pancreatic cancer, including clones with specificity to both high-quality neoantigens and predicted cross-reactive microbial epitopes, consistent with neoantigen molecular mimicry. Notably, we observed selective loss of high-quality and MUC16 neoantigenic clones on metastatic progression, suggesting neoantigen immunoediting. Our results identify neoantigens with unique qualities as T-cell targets in pancreatic ductal adenocarcinoma. More broadly, we identify neoantigen quality as a biomarker for immunogenic tumours that may guide the application of immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Bacterial Proteins/immunology , Cancer Survivors , Cross Reactions/immunology , Pancreatic Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Adenocarcinoma/blood , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Antigens, Neoplasm/genetics , Bacterial Proteins/blood , Bacterial Proteins/genetics , CA-125 Antigen/genetics , CA-125 Antigen/immunology , Computer Simulation , Cross Reactions/genetics , Humans , Immunotherapy , Membrane Proteins/genetics , Membrane Proteins/immunology , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Prognosis , Survival Analysis , T-Lymphocytes, Cytotoxic/cytology , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...