Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 49(5): 1110-1125, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016464

ABSTRACT

Certain aspects in the collection, handling, storage, and subsequent analysis of discrete air samples from non-steady-state flux chambers are critical to generating accurate and unbiased estimates of nitrous oxide (N2 O) fluxes. The focus of this paper is on air sample collection and storage in small vials (<12 ml) primarily for gas chromatography (GC) analysis. Sample integrity is assured through following simple procedures including storage under pressure and analysis within a few months of collection. Concurrent storage of standards in an identical manner to samples is recommended and allows the storage period to be reliably extended. In the laboratory, an autosampler is typically used in batch analysis of ∼200 sequentially analyzed samples by GC with an electron capture detector (ECD). Some comparisons are given between GC and alternatives including optical N2 O detectors that are increasingly being used for high-precision N2 O measurement. The importance of calibration and traceability of gas standards is discussed, where high-quality standards ensure the most accurate assessment of N2 O concentration and comparability between laboratories. The calibration allows a consistent and best estimate of flux to be derived.


Subject(s)
Nitrous Oxide , Calibration , Chromatography, Gas
2.
Environ Pollut ; 186: 63-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24361566

ABSTRACT

Between 11 May 2000 and 31 January 2013, 185 field trials were conducted across New Zealand to measure the direct nitrous oxide (N2O) emission factors (EF) from nitrogen (N) sources applied to pastoral soils. The log(EF) data were analysed statistically using a restricted maximum likelihood (REML) method. To estimate mean EF values for each N source, best linear unbiased predictors (BLUPs) were calculated. For lowland soils, mean EFs for dairy cattle urine and dung, sheep urine and dung and urea fertiliser were 1.16 ± 0.19% and 0.23 ± 0.05%, 0.55 ± 0.19% and 0.08 ± 0.02% and 0.48 ± 0.13%, respectively, each significantly different from one another (p < 0.05), except for sheep urine and urea fertiliser. For soils in terrain with slopes >12°, mean EFs were significantly lower. Thus, urine and dung EFs should be disaggregated for sheep and cattle as well as accounting for terrain.


Subject(s)
Agriculture , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Fertilizers/statistics & numerical data , Nitrous Oxide/analysis , Animals , Cattle , New Zealand , Nitrogen/analysis , Sheep , Soil/chemistry
3.
J Environ Qual ; 40(5): 1532-41, 2011.
Article in English | MEDLINE | ID: mdl-21869515

ABSTRACT

Recently the Intergovernmental Panel on Climate Change (IPCC) emission factor EF5-r was revised downward to a value of 0.0025 kg N2O-N per kg NO3-N leached. It was not reduced further due to the continued uncertainty surrounding the dynamics of N2O in river systems. There have been few studies where river system N2O yields and fluxes have been measured. In this study, we examined the relationship between NO3-N and N2O-N fluxes at 10 sites along a braided river system (84 km) over a 397-d period. Isotopic analysis of NO3-N river water samples and the potential agricultural nitrogen (N) sources demonstrated that the NO3-N came from agricultural or sewage sources. Percent saturation of N2O varied with site and date (average, 114%) and correlated with river N2O-N concentrations. Modeled N2O fluxes (16-30 µg m(-2) h(-1)) from five sites were strongly related to river NO3-N concentrations ( r² = 0.86). The modeled N2O-N fluxes ranged from 39 to 81% of the IPCC-derived emissions based on the NO3-N load in the river over 397 d and do not support further lowering of the EF5-r. Further in situ river studies are required to verify the N2O-N fluxes and the calculated gas transfer velocity values for these braided river systems.


Subject(s)
Fresh Water/chemistry , Nitrous Oxide/analysis , Colorimetry , Meteorology , New Zealand
4.
Tree Physiol ; 18(12): 785-793, 1998 Dec.
Article in English | MEDLINE | ID: mdl-12651399

ABSTRACT

Tree carbon (C) uptake (net primary productivity excluding fine root turnover, NPP') in a New Zealand Pinus radiata D. Don plantation (42 degrees 52' S, 172 degrees 45' E) growing in a region subject to summer soil water deficit was investigated jointly with canopy assimilation (A(c)) and ecosystem-atmosphere C exchange rate (net ecosystem productivity, NEP). Net primary productivity was derived from biweekly stem diameter growth measurements using allometric relations, established after selective tree harvesting, and a litterfall model. Estimates of A(c) and NEP were used to drive a biochemically based and environmentally constrained model validated by seasonal eddy covariance measurements. Over three years with variable rainfall, NPP' varied between 8.8 and 10.6 Mg C ha(-1) year(-1), whereas A(c) and NEP were 16.9 to 18.4 Mg C ha(-1) year(-1) and 5.0-7.2 Mg C ha(-1) year(-1), respectively. At the end of the growing season, C was mostly allocated to wood, with nearly half (47%) to stems and 27% to coarse roots. On an annual basis, the ratio of NEP to stand stem volume growth rate was 0.24 +/- 0.02 Mg C m(-3). The conservative nature of this ratio suggests that annual NEP can be estimated from forest yield tables. On a biweekly basis, NPP' repeatedly lagged A(c), suggesting the occurrence of intermediate C storage. Seasonal NPP'/A(c) thus varied between nearly zero and one. On an annual basis, however, NPP'/A(c) was 0.54 +/- 0.03, indicating a conservative allocation of C to autotrophic respiration. In the water-limited environment, variation in C sequestration rate was largely accounted for by a parameter integrative for changes in soil water content. The combination of mensurational data with canopy and ecosystem C fluxes yielded an estimate of heterotrophic respiration (NPP' - NEP) approximately 30% of NPP' and approximately 50% of NEP. The estimation of fine-root turnover rate is discussed.

5.
Tree Physiol ; 17(10): 607-15, 1997 Oct.
Article in English | MEDLINE | ID: mdl-14759900

ABSTRACT

In July 1993, we measured leaf conductance, carbon dioxide (CO(2)) assimilation, and transpiration in a Larix gmelinii (Rupr.) Rupr. ex Kuzen forest in eastern Siberia. At the CO(2) concentration of ambient air, maximum values (mean of 10 highest measured values) for CO(2) assimilation, transpiration and leaf conductance for water vapor were 10.1 micro mol m(-2) s(-1), 3.9 mmol m(-2) s(-1) and 365 mmol m(-2) s(-1), respectively. The corresponding mean values, which were much lower than the maximum values, were 2.7 micro mol m(-2) s(-1), 1.0 mmol m(-2) s(-1) and 56 mmol m(-2) s(-1). The mean values were similar to those of Vaccinium species in the herb layer. The large differences between maximum and actual performance were the result of structural and physiological variations within the tree crowns and between trees that reduced maximum assimilation and leaf conductance by about 40 and 60%, respectively. Thus, maximum assimilation and conductance values averaged over the canopy were 6.1 micro mol m(-2) s(-1) and 146 mmol m(-2) s(-1), respectively. Dry air caused stomatal closure, which reduced assimilation by an additional 26%. Low irradiances in the morning and evening had a minor effect (-6%). Daily canopy transpiration was estimated to be 1.45 mm day(-1), which is higher than the value of 0.94 mm day(-1) measured by eddy covariance, but similar to the value of 1.45 mm day(-1) calculated from the energy balance and soil evaporation, and less than the value of 2.1 mm day(-1) measured by xylem flux. Daytime canopy carbon assimilation, expressed on a ground area basis, was 0.217 mol m(-2) day(-1), which is higher than the value measured by eddy flux (0.162 mol m(-2) day(-1) including soil respiration). We discuss the regulation of leaf gas exchange in Larix under the extreme climatic conditions of eastern Siberia (temperature > 35 degrees C and vapor pressure deficit > 5.0 kPa).

6.
Tree Physiol ; 16(1_2): 247-255, 1996.
Article in English | MEDLINE | ID: mdl-14871769

ABSTRACT

Xylem sap flow and environmental variables were measured on seven consecutive midsummer days in a 130-year-old Larix gmelinii (Rupr.) Rupr. forest located 160 km south of Yakutsk in eastern Siberia, Russia (61 degrees N, 128 degrees E, 300 m asl). The site received 20 mm of rainfall during the 4 days before measurements, and soil samples indicated that the trees were well watered. The tree canopy was sparse with a one-sided leaf area index of 1.5 and a tree density of 1760 ha(-1). On a clear day when air temperature ranged from 9 to 29 degrees C, and maximum air saturation deficit was 3.4 kPa, daily xylem sap flux (F) among 13 trees varied by an order of magnitude from 7 l day(-1) for subcanopy trees (representing 55% of trees in the forest) to 67 l day(-1) for emergent trees (representing 18% of trees in the forest). However, when based on xylem sap flux density (F'), calculated by dividing F by projected tree crown area (a surrogate for the occupied ground area), there was only a fourfold range in variability among the 13 trees, from 1.0 to 4.4 mm day(-1). The calculation of F' also eliminated systematic and large differences in F among emergent, canopy and subcanopy trees. Stand-level F', estimated by combining half-hourly linear relationships between F and stem cross-sectional area with tree size distribution data, ranged between 1.8 +/- 0.4 (standard deviation) and 2.3 +/- 0.6 mm day(-1). These stand-level F' values are about 0.6-0.7 mm day(-1) (30%) larger than daily tree canopy transpiration rates calculated from forest energy balance and understory evaporation measurements. Maximum total tree conductance for water vapor transfer (G(tmax), including canopy and aerodynamic conductances), calculated from the ratio of F' and the above-canopy air saturation deficit (D) for the eight trees with continuous data sets, was 9.9 +/- 2.8 mm s(-1). This is equivalent to a leaf-scale maximum stomatal conductance (g(smax)) of 6.1 mm s(-1), when expressed on a one-sided leaf area basis, which is comparable to the published porometer data for Larix. Diurnal variation in total tree conductance (G(t)) was related to changes in the above-canopy visible irradiance (Q) and D. A saturating upper-boundary function for the relationship between G(t) and Q was defined as G(t) = G(tmax)(Q/[Q + Q(50)]), where Q(50) = 164 +/- 85 micro mol m(-2) s(-1) when G(t) = G(tmax)/2. Accounting for Q by excluding data for Q < Q(85) when G(t) was at least 85% of G(tmax), the upper limit for the relationship between G(t) and D was determined based on the function G(t) = (a + blnD)(2), where a and b are regression coefficients. The relationship between G(t) and D was curvilinear, indicating that there was a proportional decrease in G(t) with increasing D such that F was relatively constant throughout much of the day, even when D ranged between about 2 and 4 kPa, which may be interpreted as an adaption of the species to its continental climate. However, at given values of Q and D, G(t) was generally higher in the morning than in the afternoon. The additional environmental constraints on G(t) imposed by leaf nitrogen nutrition and afternoon water stress are discussed.

7.
Oecologia ; 95(2): 153-163, 1993 Aug.
Article in English | MEDLINE | ID: mdl-28312937

ABSTRACT

Canopy-scale evaporation rate (E) and derived surface and aerodynamic conductances for the transfer of water vapour (gs and ga, respectively) are reviewed for coniferous forests and grasslands. Despite the extremes of canopy structure, the two vegetation types have similar maximum hourly evaporation rates (E max) and maximum surface conductances (gsmax) (medians = 0.46 mm h-1 and 22 mm s-1). However, on a daily basis, median E max of coniferous forest (4.0 mm d-1) is significantly lower than that of grassland (4.6 mm d-1). Additionally, a representative value of ga for coniferous forest (200 mm s-1) is an order of magnitude more than the corresponding value for grassland (25 mm s-1). The proportional sensitivity of E, calculated by the Penman-Monteith equation, to changes in gs is >0.7 for coniferous forest, but as low as 0.3 for grassland. The proportional sensitivity of E to changes in ga is generally ±0.15 or less.Boundary-line relationships between gs and light and air saturation deficit (D) vary considerably. Attainment of gsmax occurs at a much lower irradiance for coniferous forest than for grassland (15 versus about 45% of full sunlight). Relationships between gs and D measured above the canopy appear to be fairly uniform for coniferous forest, but are variable for grassland. More uniform relationships may be found for surfaces with relatively small ga, like grassland, by using D at the evaporating surface (D0) as the independent variable rather than D at a reference point above the surface. An analytical expression is given for determining D0 from measurable quantities. Evaporation rate also depends on the availability of water in the root zone.Below a critical value of soil water storage, the ratio of evaporation rate to the available energy tends to decrease sharply and linearly with decreasing soil water content. At the lowest value of soil water content, this ratio declines by up to a factor of 4 from the non-soil-water-limiting plateau. Knowledge about functional rooting depth of different plant species remains rather limited. Ignorance of this important variable makes it generally difficult to obtain accurate estimates of seasonal evaporation from terrestrial ecosystems.

8.
Oecologia ; 91(3): 350-359, 1992 Sep.
Article in English | MEDLINE | ID: mdl-28313542

ABSTRACT

Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day-1 tree-1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s-1 that is equivalent to 112 mmol m-2 s-1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m-2 s-1 at the top and 150 mmol m-2 s-1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was -27.76±0.27‰ (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.

9.
Tree Physiol ; 9(1_2): 17-33, 1991.
Article in English | MEDLINE | ID: mdl-14972854

ABSTRACT

An hourly biophysical model was used to calculate the water balance over a period of one year for an 8.7-ha catchment with a closed-canopy, 13-year-old Pinus radiata D. Don forest in the central North Island, New Zealand. Components of the model are transpiration from the dry tree canopy, evaporation from the partially wet tree canopy and stems, evaporation from the understory and soil, and drainage from a single-layer root zone. The model requires input of hourly weather data (net radiation, air and wet bulb temperatures, windspeed, and rainfall), tree stand characteristics (average height, tree number, leaf area index), physical characteristics of the site (root zone depth, relationship between root zone matric potential and volumetric water content, the relationship between the rate of drainage from the root zone and volumetric water content, and the area of open-stream channels). A submodel of the response of stomatal conductance to air saturation deficit and root zone matric potential is also required. Tree transpiration (704 mm year(-1) or 50% of annual rainfall) was a dominant component of the catchment water balance. Estimated evaporation from the wet tree canopy was 203 mm year(-1) (15%). Evaporation from the understory was much less, amounting to 94 mm year(-1) (7%) and an increase in water storage for the 3.5 m root zone depth was estimated to be 53 mm year(-1) (4%). Estimated daily rates of drainage generally agreed well with measurements of streamflow, although estimated annual drainage (349 mm year(-1), 24%) exceeded measured streamflow (234 mm year(-1)). The significance of the results is discussed in relation to closure of the hydrologic balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...