Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JASA Express Lett ; 3(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37987643

ABSTRACT

To improve acoustical models of super heavy-lift launch vehicles, this Letter reports Space Launch System's (SLS's) overall sound power level (OAPWL) and compares it to NASA's past lunar rocket, the Saturn V. Measurements made 1.4-1.8 km from the launchpad indicate that SLS produced an OAPWL of 202.4 (±0.5) dB re 1 pW and acoustic efficiency of about 0.33%. Adjustment of a static-fire sound power spectrum for launch conditions implies Saturn V was at least 2 dB louder than SLS with approximately twice the acoustic efficiency.

2.
JASA Express Lett ; 3(5)2023 May 01.
Article in English | MEDLINE | ID: mdl-37191974

ABSTRACT

The acoustic standing wave near the end of an open pipe is investigated using spectrally analyzed high-speed transmission electronic speckle pattern interferometry. It is shown that the standing wave extends beyond the open end of the pipe and the amplitude decays exponentially with distance from the end. Additionally, a pressure node is observed near the end of the pipe in a position that is not spatially periodic with the other nodes in the standing wave. A sinusoidal fit to the amplitude of the standing wave inside the pipe indicates that the end correction is well predicted by current theory.

3.
JASA Express Lett ; 3(2): 023601, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36858987

ABSTRACT

To improve understanding of super heavy-lift rocket acoustics, this letter documents initial findings from noise measurements during liftoff of the Space Launch System's Artemis-I mission. Overall sound pressure levels, waveform characteristics, and spectra are described at distances ranging from 1.5 to 5.2 km. Significant results include: (a) the solid rocket boosters' ignition overpressure is particularly intense in the direction of the pad flame trench exit; (b) post-liftoff maximum overall levels range from 127 to 136 dB, greater than pre-launch predictions; and (c) the average maximum one-third-octave spectral peak occurred at 20 Hz, causing significant deviation between flat and A-weighted levels.

4.
Appl Opt ; 62(1): 46-49, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36606848

ABSTRACT

A method for imaging an acoustic standing wave in the presence of flowing gas is described. The optical power at the acoustic frequency in each pixel of a series of high-speed transmission electronic speckle pattern interferograms is used to map the steady-state pressure variations of an acoustic standing wave. The utility of the process is demonstrated by imaging the standing wave inside a transparent organ pipe.

SELECTION OF CITATIONS
SEARCH DETAIL
...