Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Database (Oxford) ; 20242024 Feb 22.
Article in English | MEDLINE | ID: mdl-38554132

ABSTRACT

In this report, we analyse the use of virtual reality (VR) as a method to navigate and explore complex knowledge graphs. Over the past few decades, linked data technologies [Resource Description Framework (RDF) and Web Ontology Language (OWL)] have shown to be valuable to encode such graphs and many tools have emerged to interactively visualize RDF. However, as knowledge graphs get larger, most of these tools struggle with the limitations of 2D screens or 3D projections. Therefore, in this paper, we evaluate the use of VR to visually explore SPARQL Protocol and RDF Query Language (SPARQL) (construct) queries, including a series of tutorial videos that demonstrate the power of VR (see Graph2VR tutorial playlist: https://www.youtube.com/playlist?list=PLRQCsKSUyhNIdUzBNRTmE-_JmuiOEZbdH). We first review existing methods for Linked Data visualization and then report the creation of a prototype, Graph2VR. Finally, we report a first evaluation of the use of VR for exploring linked data graphs. Our results show that most participants enjoyed testing Graph2VR and found it to be a useful tool for graph exploration and data discovery. The usability study also provides valuable insights for potential future improvements to Linked Data visualization in VR.


Subject(s)
Semantic Web , Virtual Reality , Humans , Databases, Factual , Language
2.
Database (Oxford) ; 20232023 04 26.
Article in English | MEDLINE | ID: mdl-37114804

ABSTRACT

The mapping of human-entered data to codified data formats that can be analysed is a common problem across medical research and health care. To identify risk and protective factors for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) susceptibility and coronavirus disease 2019 (COVID-19) severity, frequent questionnaires were sent out to participants of the Lifelines Cohort Study starting 30 March 2020. Because specific drugs were suspected COVID-19 risk factors, the questionnaires contained multiple-choice questions about commonly used drugs and open-ended questions to capture all other drugs used. To classify and evaluate the effects of those drugs and group participants taking similar drugs, the free-text answers needed to be translated into standard Anatomical Therapeutic Chemical (ATC) codes. This translation includes handling misspelt drug names, brand names, comments or multiple drugs listed in one line that would prevent a computer from finding these terms in a simple lookup table. In the past, the translation of free-text responses to ATC codes was time-intensive manual labour for experts. To reduce the amount of manual curation required, we developed a method for the semi-automated recoding of the free-text questionnaire responses into ATC codes suitable for further analysis. For this purpose, we built an ontology containing the Dutch drug names linked to their respective ATC code(s). In addition, we designed a semi-automated process that builds upon the Molgenis method SORTA to map the responses to ATC codes. This method can be applied to support the encoding of free-text responses to facilitate the evaluation, categorization and filtering of free-text responses. Our semi-automatic approach to coding of drugs using SORTA turned out to be more than two times faster than current manual approaches to performing this activity. Database URL https://doi.org/10.1093/database/baad019.


Subject(s)
COVID-19 , Humans , Cohort Studies , COVID-19/epidemiology , SARS-CoV-2 , Surveys and Questionnaires , Databases, Factual
SELECTION OF CITATIONS
SEARCH DETAIL
...