Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(35): eaaz4551, 2020 08.
Article in English | MEDLINE | ID: mdl-32923617

ABSTRACT

Recently, covalent modifications of RNA, such as methylation, have emerged as key regulators of all aspects of RNA biology and have been implicated in numerous diseases, for instance, cancer. Here, we undertook a combination of in vitro and in vivo screens to test 78 potential methyltransferases for their roles in hepatocellular carcinoma (HCC) cell proliferation. We identified methyltransferase-like protein 6 (METTL6) as a crucial regulator of tumor cell growth. We show that METTL6 is a bona fide transfer RNA (tRNA) methyltransferase, catalyzing the formation of 3-methylcytidine at C32 of specific serine tRNA isoacceptors. Deletion of Mettl6 in mouse stem cells results in changes in ribosome occupancy and RNA levels, as well as impaired pluripotency. In mice, Mettl6 knockout results in reduced energy expenditure. We reveal a previously unknown pathway in the maintenance of translation efficiency with a role in maintaining stem cell self-renewal, as well as impacting tumor cell growth profoundly.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Cell Proliferation , Liver Neoplasms/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mice , RNA , RNA, Transfer/genetics , RNA, Transfer/metabolism , tRNA Methyltransferases
2.
RNA ; 26(11): 1654-1666, 2020 11.
Article in English | MEDLINE | ID: mdl-32763916

ABSTRACT

The deamination of adenosine to inosine at the wobble position of tRNA is an essential post-transcriptional RNA modification required for wobble decoding in bacteria and eukaryotes. In humans, the wobble inosine modification is catalyzed by the heterodimeric ADAT2/3 complex. Here, we describe novel pathogenic ADAT3 variants impairing adenosine deaminase activity through a distinct mechanism that can be corrected through expression of the heterodimeric ADAT2 subunit. The variants were identified in a family in which all three siblings exhibit intellectual disability linked to biallelic variants in the ADAT3 locus. The biallelic ADAT3 variants result in a missense variant converting alanine to valine at a conserved residue or the introduction of a premature stop codon in the deaminase domain. Fibroblast cells derived from two ID-affected individuals exhibit a reduction in tRNA wobble inosine levels and severely diminished adenosine tRNA deaminase activity. Notably, the ADAT3 variants exhibit impaired interaction with the ADAT2 subunit and alterations in ADAT2-dependent nuclear localization. Based upon these findings, we find that tRNA adenosine deaminase activity and wobble inosine modification can be rescued in patient cells by overexpression of the ADAT2 catalytic subunit. These results uncover a key role for the inactive ADAT3 deaminase domain in proper assembly with ADAT2 and demonstrate that ADAT2/3 nuclear import is required for maintaining proper levels of the wobble inosine modification in tRNA.


Subject(s)
Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Intellectual Disability/genetics , Mutation, Missense , RNA, Transfer/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Active Transport, Cell Nucleus , Adenosine/metabolism , Adenosine Deaminase/chemistry , Adolescent , Binding Sites , Cells, Cultured , Child , Child, Preschool , Codon, Terminator , Female , Genetic Predisposition to Disease , Humans , Inosine/metabolism , Intellectual Disability/metabolism , Male , Pedigree , Protein Domains , RNA-Binding Proteins/chemistry , Exome Sequencing
3.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32217665

ABSTRACT

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Subject(s)
Cell Differentiation/genetics , Gene Expression Regulation, Developmental/genetics , Adenosine/analogs & derivatives , Adenosine/metabolism , Animals , Mice , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/enzymology , Mutation , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Protein Biosynthesis/genetics , RNA, Ribosomal, 18S/metabolism
4.
Mol Cell Biol ; 39(19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31263000

ABSTRACT

The formation of inosine at the wobble position of eukaryotic tRNAs is an essential modification catalyzed by the ADAT2/ADAT3 complex. In humans, a valine-to-methionine mutation (V144M) in ADAT3 that originated ∼1,600 years ago is the most common cause of autosomal recessive intellectual disability (ID) in Arabia. While the mutation is predicted to affect protein structure, the molecular and cellular effects of the V144M mutation are unknown. Here, we show that cell lines derived from ID-affected individuals expressing only ADAT3-V144M exhibit decreased wobble inosine in certain tRNAs. Moreover, extracts from the same cell lines of ID-affected individuals display a severe reduction in tRNA deaminase activity. While ADAT3-V144M maintains interactions with ADAT2, the purified ADAT2/3-V144M complexes exhibit defects in activity. Notably, ADAT3-V144M exhibits an increased propensity to form aggregates associated with cytoplasmic chaperonins that can be suppressed by ADAT2 overexpression. These results identify a key role for ADAT2-dependent folding of ADAT3 in wobble inosine modification and indicate that proper formation of an active ADAT2/3 complex is crucial for proper neurodevelopment.


Subject(s)
Adenosine Deaminase/genetics , Amino Acid Substitution , Intellectual Disability/genetics , RNA, Transfer, Amino Acid-Specific/metabolism , RNA-Binding Proteins/genetics , Adenosine Deaminase/chemistry , Adenosine Deaminase/metabolism , Cell Line , Child , Female , HEK293 Cells , HeLa Cells , Humans , Inosine/metabolism , Male , Models, Molecular , Pedigree , Protein Binding , Protein Conformation , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Young Adult
5.
Mol Cell Biol ; 37(21)2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28784718

ABSTRACT

Mutations in the tRNA methyltransferase 1 (TRMT1) gene have been identified as the cause of certain forms of autosomal-recessive intellectual disability (ID). However, the molecular pathology underlying ID-associated TRMT1 mutations is unknown, since the biological role of the encoded TRMT1 protein remains to be determined. Here, we have elucidated the molecular targets and function of TRMT1 to uncover the cellular effects of ID-causing TRMT1 mutations. Using human cells that have been rendered deficient in TRMT1, we show that TRMT1 is responsible for catalyzing the dimethylguanosine (m2,2G) base modification in both nucleus- and mitochondrion-encoded tRNAs. TRMT1-deficient cells exhibit decreased proliferation rates, alterations in global protein synthesis, and perturbations in redox homeostasis, including increased endogenous ROS levels and hypersensitivity to oxidizing agents. Notably, ID-causing TRMT1 variants are unable to catalyze the formation of m2,2G due to defects in RNA binding and cannot rescue oxidative stress sensitivity. Our results uncover a biological role for TRMT1-catalyzed tRNA modification in redox metabolism and show that individuals with TRMT1-associated ID are likely to have major perturbations in cellular homeostasis due to the lack of m2,2G modifications.


Subject(s)
Guanosine/analogs & derivatives , Intellectual Disability/genetics , RNA, Transfer/metabolism , tRNA Methyltransferases/genetics , tRNA Methyltransferases/metabolism , Catalysis , Cell Proliferation , Cell Survival , Guanosine/metabolism , HEK293 Cells , HeLa Cells , Homeostasis , Humans , Mutation , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism
6.
Proc Natl Acad Sci U S A ; 113(11): E1452-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26929322

ABSTRACT

The discovery of ∼20-kb gene clusters containing a family of paralogs of tRNA guanosine transglycosylase genes, called tgtA5, alongside 7-cyano-7-deazaguanine (preQ0) synthesis and DNA metabolism genes, led to the hypothesis that 7-deazaguanine derivatives are inserted in DNA. This was established by detecting 2'-deoxy-preQ0 and 2'-deoxy-7-amido-7-deazaguanosine in enzymatic hydrolysates of DNA extracted from the pathogenic, Gram-negative bacteria Salmonella enterica serovar Montevideo. These modifications were absent in the closely related S. enterica serovar Typhimurium LT2 and from a mutant of S Montevideo, each lacking the gene cluster. This led us to rename the genes of the S. Montevideo cluster as dpdA-K for 7-deazapurine in DNA. Similar gene clusters were analyzed in ∼150 phylogenetically diverse bacteria, and the modifications were detected in DNA from other organisms containing these clusters, including Kineococcus radiotolerans, Comamonas testosteroni, and Sphingopyxis alaskensis Comparative genomic analysis shows that, in Enterobacteriaceae, the cluster is a genomic island integrated at the leuX locus, and the phylogenetic analysis of the TgtA5 family is consistent with widespread horizontal gene transfer. Comparison of transformation efficiencies of modified or unmodified plasmids into isogenic S. Montevideo strains containing or lacking the cluster strongly suggests a restriction-modification role for the cluster in Enterobacteriaceae. Another preQ0 derivative, 2'-deoxy-7-formamidino-7-deazaguanosine, was found in the Escherichia coli bacteriophage 9 g, as predicted from the presence of homologs of genes involved in the synthesis of the archaeosine tRNA modification. These results illustrate a deep and unexpected evolutionary connection between DNA and tRNA metabolism.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , Genomic Islands , Guanine/analogs & derivatives , Salmonella enterica/genetics , Amino Acid Sequence , Bacterial Proteins/genetics , Coliphages/genetics , Coliphages/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Deoxyguanosine/analogs & derivatives , Deoxyguanosine/analysis , Deoxyguanosine/metabolism , Gene Transfer, Horizontal , Guanine/chemistry , Guanine/metabolism , Guanosine/analogs & derivatives , Guanosine/metabolism , Molecular Sequence Data , Multigene Family , Mutation , Phylogeny , Purines/analysis , RNA, Transfer/genetics , RNA, Transfer/metabolism , Salmonella enterica/metabolism , Salmonella typhimurium/genetics
7.
RNA ; 21(12): 2103-18, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26516084

ABSTRACT

N(6)-threonylcarbamoyl-adenosine (t6A) is one of the few RNA modifications that is universally present in life. This modification occurs at high frequency at position 37 of most tRNAs that decode ANN codons, and stabilizes cognate anticodon-codon interactions. Nearly all genetic studies of the t6A pathway have focused on single-celled organisms. In this study, we report the isolation of an extensive allelic series in the Drosophila ortholog of the core t6A biosynthesis factor Kae1. kae1 hemizygous larvae exhibit decreases in t6A that correlate with allele strength; however, we still detect substantial t6A-modified tRNAs even during the extended larval phase of null alleles. Nevertheless, complementation of Drosophila Kae1 and other t6A factors in corresponding yeast null mutants demonstrates that these metazoan genes execute t6A synthesis. Turning to the biological consequences of t6A loss, we characterize prominent kae1 melanotic masses and show that they are associated with lymph gland overgrowth and ectopic generation of lamellocytes. On the other hand, kae1 mutants exhibit other phenotypes that reflect insufficient tissue growth. Interestingly, whole-tissue and clonal analyses show that strongly mitotic tissues such as imaginal discs are exquisitely sensitive to loss of kae1, whereas nonproliferating tissues are less affected. Indeed, despite overt requirements of t6A for growth of many tissues, certain strong kae1 alleles achieve and sustain enlarged body size during their extended larval phase. Our studies highlight tissue-specific requirements of the t6A pathway in a metazoan context and provide insights into the diverse biological roles of this fundamental RNA modification during animal development and disease.


Subject(s)
Adenosine/analogs & derivatives , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Adenosine/biosynthesis , Alleles , Amino Acid Sequence , Animals , Biosynthetic Pathways , Conserved Sequence , Drosophila melanogaster/cytology , Drosophila melanogaster/enzymology , Female , Genetic Complementation Test , Imaginal Discs/enzymology , Imaginal Discs/growth & development , Larva/cytology , Larva/enzymology , Larva/genetics , Male , Mitosis , Molecular Sequence Data , Mutation , Organ Specificity , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...