Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 5(8): 3972-3981, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35905450

ABSTRACT

Adsorption and controlled release of agrochemicals has been studied widely using different nanomaterials and a variety of formulations. However, the potential for application of high surface-area metal-organic frameworks (MOFs) for the controlled release of agrochemicals has not been thoroughly explored. Herein, we report controlled and sustainable release of a widely used herbicide (2-methyl-4-chlorophenoxyacetic acid, MCPA) via incorporation in a range of zirconium-based MOFs and their biodegradable polymer composites. Three Zr-based MOFs, viz., UiO-66, UiO-66-NH2, and UiO-67 were loaded with MCPA either postsynthetically or in situ during synthesis of the MOFs. The MCPA-loaded MOFs were then incorporated into a biodegradable polycaprolactone (PCL) composite membrane. All three MOFs and their PCL composites were thoroughly characterized using FT-IR, TGA, SEM, PXRD, BET, and mass spectrometry. Release of MCPA from each of these MOFs and their PCL composites was then studied in both distilled water and in ethanol for up to 72 h using HPLC. The best performance for MCPA release was observed for the postsynthetically loaded MOFs, with PS-MCPA@UiO-66-NH2 showing the highest MCPA concentrations in ethanol and water of 0.056 and 0.037 mg/mL, respectively. Enhanced release of MCPA was observed in distilled water when the MOFs were incorporated in PCL. The concentrations of herbicides in the release studies provide us with a range of inhibitory concentrations that can be utilized depending on the crop, making this class of composite materials a promising new route for future agricultural applications.


Subject(s)
2-Methyl-4-chlorophenoxyacetic Acid , Herbicides , Metal-Organic Frameworks , Delayed-Action Preparations , Ethanol , Herbicides/chemistry , Metal-Organic Frameworks/chemistry , Phthalic Acids , Polymers , Spectroscopy, Fourier Transform Infrared , Water , Zirconium/chemistry
2.
Bioengineering (Basel) ; 9(4)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35447723

ABSTRACT

Healthcare applications are known to have a considerable environmental impact and the use of bio-based polymers has emerged as a powerful approach to reduce the carbon footprint in the sector. This research aims to explore the suitability of using a new sustainable polyester blend (Floreon™) as a scaffold directed to aid in musculoskeletal applications. Musculoskeletal problems arise from a wide range of diseases and injuries related to bones and joints. Specifically, bone injuries may result from trauma, cancer, or long-term infections and they are currently considered a major global problem in both developed and developing countries. In this work we have manufactured a series of 3D-printed constructs from a novel biopolymer blend using fused deposition modelling (FDM), and we have modified these materials using a bioceramic (wollastonite, 15% w/w). We have evaluated their performance in vitro using human dermal fibroblasts and rat mesenchymal stromal cells. The new sustainable blend is biocompatible, showing no differences in cell metabolic activity when compared to PLA controls for periods 1-18 days. FloreonTM blend has proven to be a promising material to be used in bone tissue regeneration as it shows an impact strength in the same range of that shown by native bone (just under 10 kJ/m2) and supports an improvement in osteogenic activity when modified with wollastonite.

3.
Int J Pharm ; 559: 245-254, 2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30699365

ABSTRACT

The aim of this study was to evaluate the choice of polymer and polymer level on the performance of the microstructure and wettability of hot-melt extruded solid dispersion of Glyburide (Gly) as a model drug. The produced solid dispersion were characterised using scanning electron microscopy (SEM), image analysis using a focus variation instrument (FVI), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), X-ray microtomography (XµT), dynamic contact angle measurement and dissolution analysis using biorelevant dissolution media (FASSIF). SEM and focus variation analysis showed that the microstructure and surface morphology was significantly different between samples produced. This was confirmed by further analysis using XµT which showed that an increase in polymer content brought about a decrease in the porosity of the hot-melt extruded dispersions. DSC suggested complete amorphorisation of Gly whereas XRPD suggested incomplete amorphorisation. The static and dynamic contact angle measurement correlated with the dissolution studies using FASSIF media indicating that the initial liquid imbibition process as captured by the dynamic contact angle directly affects the dissolution performance.


Subject(s)
Glyburide/chemistry , Polymers/chemistry , Calorimetry, Differential Scanning/methods , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Compounding/methods , Freezing , Hot Temperature , Polyethylene Glycols/chemistry , Polyvinyls/chemistry , Powders/chemistry , Solubility , Wettability , X-Ray Diffraction/methods
4.
J Pharm Sci ; 106(1): 66-70, 2017 01.
Article in English | MEDLINE | ID: mdl-28029342

ABSTRACT

A green approach has been used for co-crystallization of noncongruent co-crystal pair of caffeine/maleic acid using water. Ultrasound is known to affect crystallization; hence, the effect of high power ultrasound on the ternary phase diagram has been investigated in detail using a slurry co-crystallization approach. A systematic investigation was performed to understand how the accelerated conditions during ultrasound-assisted co-crystallization will affect different regions of the ternary phase diagram. Application of ultrasound showed considerable effect on the ternary phase diagram, principally on caffeine/maleic acid 2:1 (disappeared) and 1:1 co-crystal (narrowed) regions. Also, the stability regions for pure caffeine and maleic acid in water were narrowed in the presence of ultrasound, expanding the solution region. The observed effect of ultrasound on the phase diagram was correlated with solubility of caffeine and maleic acid and stability of co-crystal forms in water.


Subject(s)
Caffeine/chemistry , Crystallization/methods , Maleates/chemistry , Sonication/methods , Caffeine/chemical synthesis , Green Chemistry Technology/methods , Maleates/chemical synthesis , Phase Transition , Solubility , Water/chemistry
5.
Pharm Res ; 27(12): 2725-33, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20872053

ABSTRACT

PURPOSE: To explore hot melt extrusion (HME) as a scalable, solvent-free, continuous technology to design cocrystals in agglomerated form. METHODS: Cocrystal agglomerates of ibuprofen and nicotinamide in 1:1 ratio were produced using HME at different barrel temperature profiles, screw speeds, and screw configurations. Product was characterized for crystallinity by XRPD and DSC, while the morphology was determined by SEM. Dissolution rate and tabletting properties were compared with ibuprofen. RESULTS: Process parameters significantly affected the extent of cocrystallization which improved with temperature, applied shear and residence time. Processing above eutectic point was required for cocrystallization to occur, and it improved with mixing intensity by changing screw configuration. Product was in the form of spherical agglomerates, which showed directly compressible nature with enhanced dissolution rate compared to ibuprofen. This marks an important advantage over the conventional techniques, as it negates the need for further size modification steps. CONCLUSIONS: A single-step, scalable, solvent-free, continuous cocrystallization and agglomeration technology was developed using HME, offering flexibility for tailoring the cocrystal purity. HME being an established technology readily addresses the regulatory demand of quality by design (QbD) and process analytical technology (PAT), offering high potential for pharmaceuticals.


Subject(s)
Hot Temperature , Pharmaceutical Preparations/chemistry , Calorimetry, Differential Scanning , Chromatography, High Pressure Liquid , Crystallization , Microscopy, Electron, Scanning , Solubility , Spectrophotometry, Ultraviolet , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...