Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Comput Chem ; 42(6): 458-464, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33368350

ABSTRACT

IOData is a free and open-source Python library for parsing, storing, and converting various file formats commonly used by quantum chemistry, molecular dynamics, and plane-wave density-functional-theory software programs. In addition, IOData supports a flexible framework for generating input files for various software packages. While designed and released for stand-alone use, its original purpose was to facilitate the interoperability of various modules in the HORTON and ChemTools software packages with external (third-party) molecular quantum chemistry and solid-state density-functional-theory packages. IOData is designed to be easy to use, maintain, and extend; this is why we wrote IOData in Python and adopted many principles of modern software development, including comprehensive documentation, extensive testing, continuous integration/delivery protocols, and package management. This article is the official release note of the IOData library.

2.
ACS Omega ; 5(28): 17170-17181, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32715202

ABSTRACT

The incorporation of polarizability in classical force-field molecular simulations is an ongoing area of research. We focus here on its application to hydration free energy simulations of organic molecules. In contrast to computationally complex approaches involving the development of explicitly polarizable force fields, we present herein a simple methodology for incorporating polarization into such simulations using standard fixed-charge force fields, which we call the alchemically polarized charges (APolQ) method. APolQ employs a standard classical alchemical free energy change simulation to calculate the free energy difference between a fully polarized solute particle in a condensed phase and its unpolarized state in a vacuum. APolQ can in principle be applied to any microscopically homogeneous system (e.g., pure or mixed solvents). We applied APolQ to hydration free energy data for a test set of 45 neutral solute molecules in the FreeSolv database and compared results obtained using three different water models (SPC/E, TIP3P, and OPC3) and using minimal basis iterative Stockholder (MBIS) and restrained electrostatic potential (RESP) partial charge methodologies. In comparison with AM1-BCC, we found that APolQ outperforms it for the test set. Despite our method using default GAFF parameters, the MBIS partial charges yield absolute average deviations 1.5-1.9 kJ mol-1 lower than using AM1 bond charge correction (AM1-BCC). We conjecture that this method can be further improved by fitting the Lennard-Jones and torsional parameters to partial charges derived using MBIS or RESP methodologies.

3.
J Chem Theory Comput ; 16(2): 1146-1161, 2020 Feb 11.
Article in English | MEDLINE | ID: mdl-31930918

ABSTRACT

We present a methodology using fixed charge force fields for alchemical solvation free energy calculations which accounts for the change in polarity that the solute experiences as it transfers from the gas-phase to the condensed phase. We update partial charges using QM/MM snapshots, decoupling the electric field appropriately when updating the partial charges. We also show how to account for the cost of self-polarization. We test our methodology on 30 molecules ranging from small polar to large druglike molecules. We use Minimum Basis Iterative Stockholder (MBIS), Restrained Electrostatic Potential (RESP), and AM1-BCC partial charge methodologies. Using our method with MP2/cc-pVTZ and MBIS partial charges yields an average absolute deviation (AAD) of 6.3 kJ·mol-1 in comparison with the AM1-BCC result of 8.6 kJ·mol-1. AM1-BCC is within experimental uncertainty on 10% of the data compared to 30% with our method. We conjecture that results can be further improved by using Lennard-Jones and torsional parameters refitted to MBIS and RESP partial charge methods that use high levels of theory.

SELECTION OF CITATIONS
SEARCH DETAIL
...